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A B S T R A C T   

Tropospheric ozone (O3) is one of the most concernedair pollutants dueto its widespread impacts on land 
vegetated ecosystems and human health. Ozone is also the third greenhouse gas for radiative forcing. Conse-
quently, it should be carefully and continuously monitored to estimate its potential adverse impacts especially 
inthose regions where concentrations are high. Continuous large-scale O3 concentrations measurement is crucial 
but may be unfeasible because of economic and practical limitations; therefore, quantifying the real impact of 
O3over large areas is currently an open challenge. Thus, one of the final objectives of O3 modelling is to 
reproduce maps of continuous concentrations (both spatially and temporally) and risk assessment for human and 
ecosystem health. We here reviewedthe most relevant approaches used for O3 modelling and mapping starting 
from the simplest geo-statistical approaches andincreasing in complexity up to simulations embedded into the 
global/regional circulation models and pro and cons of each mode are highlighted. The analysis showed that a 
simpler approach (mostly statistical models) is suitable for mappingO3concentrationsat the local scale, where 
enough O3concentration data are available. The associated error in mapping can be reduced by using more 
complex methodologies, based on co-variables. The models available at the regional or global level are used 
depending on the needed resolution and the domain where they are applied to. Increasing the resolution cor-
responds to an increase in the prediction but only up to a certain limit. However, with any approach, the 
ensemble models should be preferred.   

1. Introduction 

Because of its widespread presence in urban and rural environments, 
air pollution is a serious threat forany life-form and especially for ani-
maland plant health (Lelieveld et al., 2015; Sicard et al., 2016a). The 
increasing pollutant emissions inmany regions of the worldare perceived 
as the second biggest environmental concern by citizens, after climate 
change (EEA, 2019). This perception results in an increasing level of 

attention for media and citizens. This growing public engagement, 
which includes ongoing citizen science initiatives supporting air quality 
monitoring (EEA, 2019) and initiativesto increase public awareness and 
behavioural changes around air pollution challenges, hasled to growing 
expectations for measures aiming at preventing severe risk for human 
health. Tropospheric ozone (O3) is one of the most important atmo-
spheric pollutants in terms of detrimental effects on human (Cohen 
et al., 2017; Sicard et al., 2021a) and ecosystems health (Li et al., 2018; 
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Feng et al., 2019), as well as on biodiversity conservation (Agathokleous 
et al., 2020). 

Ground-level O3is a secondary pollutant formed by its precursors 
(nitrogen oxides, NOx; Volatile Organic Compounds, VOCs; and 
methane) in the presence of sunlight; its concentrations are influenced 
by anthropogenic and natural emissions, chemical, physical, and bio-
logical processes (Lamarque et al., 2013). Local and remote pollution 
sources, atmospheric chemical processes, long-range transport (Huang 
et al., 2018; Jonson et al., 2018) and stratospheric influx (Knowland 
et al., 2017)all affecttropospheric O3 concentrations. In addition to 
anthropogenic sources, natural processes such as El Niño-Southern 
Oscillation (ENSO) conditions influence tropospheric O3 production 
(Rowlinson et al., 2019). Increments in surface O3 concentrations 
contribute to changes in air quality (Sicard et al., 2020; Sicard, 2021), 
human health (Cohen et al., 2017), forest growth and vitality (Proietti 
et al., 2016; Feng et al., 2019) and agricultural productivity (Van Din-
genen et al., 2009). Tropospheric O3contributes to increasing global 
warming both directly, due to its radiative effects (Checa-Garcia et al., 
2018), and indirectly, by affecting photosynthesis and ultimately 
reducing the land carbon sink capacity (Sitch et al., 2008). 

Air quality conditions require, as the first and essential step, relia-
bleestimatesof air pollutants concentrations. Different O3 measurement 
techniqueshave beenrecently reviewed bySaitanis et al. (2020), show-
ingthatair quality monitoring stations cannot cover all the territory, due 
to economic and technical limitations. Indeed, monitoring networks are 
often spatially heterogeneous with limited geographic coverage, for 
instance in China (Sicard et al., 2021b) or in the United States (Bravo 
et al., 2012). Identifying the environmental factors that influence air 
pollutantslevels over these areas is thus necessary to establish new lo-
cations for extending the network representativeness. Due to the 
impossibility to directly measure O3 concentrations in all areas, the 
modelling approach is a useful and suitable tool to indirectly obtain 
information on O3 concentrations over large regions. Researchers and 
technicians use models as integrative tools for risk assessment of O3 
pollution and policy evaluation in several ways. In the first place, models 
are used to estimate surfaceO3concentrations. Furthermore, modelling 
activities are needed to estimate the risk posed by these O3 levels to 
ecosystems or human health. Finally, modelling is essential for fore-
casting both O3levels and their effects under the future scenarios of air 
pollution and climate change. Modelling ground-level O3 has thus been 
one of the notable topics in the last decades among the air pollution 
community (Simpson et al., 2012). 

The impact of air pollution can be indirectly estimated through 
epidemiological studies, the so-called “risk assessment", for both human 
and ecosystem health (Braun et al., 2017). Regarding human health, the 
risk assessment represents the number of cases of health endpoints 
attributable to exposure to air pollutants at any scale (World Health 
Organization, 2013). These results, together with information about 
mortality and estimated risk, can be efficiently represented on 
geographical maps to highlight the distribution and extent of the threat, 
and to identify objectives and priorities for any prevention, remediation, 
or mitigation actions (Briggs, 2008). Regarding ecosystem health, the 
generation of reliable O3 mapsis needed for risk assessment and is a 
challenging process (Sicard et al., 2016b). Starting from several mea-
surements over a large area, numerous approaches are used to map O3 
pollution and make predictions of the impacts because of O3 pollution 
and have been reported in the literature (e.g.,De Marco, 2008; Li et al., 
2014). Although the O3 formation and the dispersion of its precursors in 
the troposphere are intricate, researchers have made significant efforts 
to simplify this complex behaviour and to understand the characteristics 
of their distribution over time. 

Overall, the approachesto O3modelling can be formally groupedinto 
two broad families defined as: statistical, which can be broken down 
further into “pure” statistical and geostatistical ones; and deterministic,e. 
g. chemistry transport models. Each of these two different inherently 
different approaches refers to variable spatial and temporal scale, with 

different data needs and pros and cons as highlighted in the assessment 
of the model performance paragraph. 

The main aims of this review paper are: i) to describe the current 
state-of-the-art knowledge used in tropospheric O3 modelling and 
mapping; ii) to discuss whether different approaches differ (or look 
similar) each other and identifying pros and cons for each approach; and 
iii) to stimulate and outline important directions for further research in 
O3 modelling for the near future. Overall, the informationcollected here 
can be used and serving as a guideline and handbook for those 
approaching to study ozone and to its modellingand helping in finding 
the best approach for a particular purpose. 

2. Statistical approach 

2.1. Statistical models 

Traditional statistical approaches include multiple linear regressions 
(Abdul-Wahab et al., 2005), multiple linear regressions combined with 
principal component analysis (Tan et al., 2016), and atmospheric 
dispersion models at city scale (Pineda Rojas et al., 2016). The multiple 
linear regression method was widely used because of the convenience of 
establishing a direct relation between O3 and the variables associated 
with its behaviour, through a rather simple and explicit equation (Bar-
rero et al., 2006). On the other hand, the non-linear relationship be-
tween O3 and its contributing factors makes the linear models unfit (De 
Marco et al., 2013). Multiple linear regressions also suffer from the risk 
of data collinearity and limitation to obtain the best fit and therefore 
need large datasets of local variables (Awang et al., 2015). Furthermore, 
the complexity of O3 formation, combined with the uncertainty in the 
measurement of most of the involved parameters, makes the modelling 
process intricate (Lamarque et al., 2013). 

In rural areas, where the geographical distribution of monitoring 
stations is heterogeneous, geostatistical models are of great value 
(Sicard et al., 2013). Starting from a set of monitoring stations, a hybrid 
regression-interpolation approach was proposed, i.e., local regression 
followed by kriging of residuals (Sicard et al., 2016b). Land-Use 
Regression and ordinary kriging comprise the most used geostatistical 
approach for O3 prediction (Jerrett et al., 2004) and are useful to 
develop optimal O3 maps. Each geostatistical model has its inherent 
uncertainty due to the complexity of the atmospheric environment 
(Adam-Poupart et al., 2014). 

2.2. Geostatistical models 

The geostatistical approach assumes that the phenomena occurring 
in natural conditionsare spatially dependent and/or somehow corre-
lated. Samples taken at nearby locations are expected to have more 
similar values than samples taken farther apart, based on the assumption 
that everything is related to everything else (Tobler, 1970). It was re-
ported that Tobler’s first law of geography is the core of spatial inter-
polation and geostatistical analysis (Miller, 2004). Spatially correlated 
values not only facilitate optimal and continuummapping of the pollu-
tion in the entire area but also provide valuable information about the 
air quality of that area (De Marco, 2008). The final objective of the 
spatial interpolation is to predict the air pollution concentrations over a 
defined region by estimating the concentrations at unmeasured loca-
tions based on known measurementsin specific sites. The simplest geo-
statistical methodology is the Inverse Distance Weighting (IDW), 
whichproduces a prediction as a weighted average of monitor data with 
weight based on inverse distance to the unsampled location. Berman 
et al. (2015) applied this methodology to map ozone concentration in 
the US, but its methodologieswas outperformed by other more accurate, 
such kriging. IDW is particularly critical because it is based on spatia-
lautocorrelation. Indeed, IDW assigns more weight to nearby points than 
to distant points (Myers, 1991), thus requiring spatial autocorrelation. 

Kriging is one of the first geostatistical methods used in mining and 
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geological engineering sincethe 1950s (Chang, 2008). Since then, it has 
been used in air quality studies (e.g.,De Marco, 2008; Adam-Poupart 
et al., 2014; Sicard et al., 2016b; Feng et al., 2019), with accurate pre-
dictions and estimates (Fraczek et al., 2001). The main advantage of 
using kriging in spatial interpolation relies on its ability to calculate the 
uncertainty of prediction which is useful in decision making. A kriging 
interpolation model predicts surfaces better than other geostatistical 
models when data are checked for outliers and errors. If the data follow a 
normal distribution, kriging is to date the best-unbiased method of 
predicting a surface (Kethireddy et al., 2014), even though the spatial 
prediction does not necessarily require the data to be normally distrib-
uted. Technological and scientific advances led to the development of 
geospatial platforms in which certain tools and extensions allow 
studying the spatial-temporal changes of geo-environmental phenom-
ena. It was reported that geostatistical analysis can assess potential 
environmental hazards by interpolating the possible flow and direction 
of air pollution, biohazard releases, and any potentially harmful waste 
that may be introduced into an area (Kethireddy et al., 2014). 

An extensive analysis of different O3interpolation techniques (from 
Inverse Distance Weighting to Ordinary Kriging) was performed by 
Hůnová et al. (2012)by estimating uncertainties linked to the interpo-
lation asroot-mean-square error (RMSE) in Czech forests. The most 
suitable methodology was the ordinary kriging recommended as the 
optimal approach out of the eleven spatial interpolation techniques 
examined. The estimation of RMSE was done for both O3concentrations 
and AOT40 (Accumulated hourly Ozone over Threshold of 40 ppb) and 
was ranging between 10% and 20%, respectively (Hůnová et al., 2012). 
Another example of geostatistical methodologies used to map O3was 
applied by Frazcek et al. (2001) in the Sierra Nevada (United States) and 
Carpathian (Central Europe) Mountains. In particular, kriging and 
co-kriging were compared. The latter was performed using two addi-
tional variables related to O3concentrations, elevation, and maximum 
air temperature. The use of the additionalvariables was able to supply 
the low intensity of O3 data in the CarpathianMountains. Sufficient 
numbers of monitoring sites, spatially homogeneous distributed across 
the territory, werefound to be a key factor for model accuracy and 
reliability (Frazcek et al., 2001; Sicard et al., 2016b). 

Amongthe different kriging options, Universal kriging, was observed 
to give better results than Ordinary krigingin US ozone concentrations 
mapping, allowing to assess the significance of environmental covariates 
for both inference and prediction of O3concentrations (Berman et al., 
2015). Between the concerns of kriging, it is depending on spatial 
autocorrelationas IDW. Indeed, a critical component of kriging is the 
semivariogram. A useful semivariogram cannot be developed without 
the presence of spatial autocorrelation; the degree of spatial autocor-
relation determines how successful spatial interpolation will be (Griffith 
and Layne, 1999). 

Kriging performance can be improved using co-variable related to 
ozone concentrations in the co-kriging interpolation. Co-kriging allows 
to better estimate primary variable if the distribution of a secondary 
correlated variable is sampled more intensely than the primary variable. 
The most used co-variable is the Digital Elevation Model (DEM), taking 
into account topographic effects (Sicard et al., 2013). The authors 
applied this methodology in Mediterranean basin to background ozone 
stations. The co-kriging was able to compensate for the lack of sufficient 
sampling in some areas. The RMSSE was always close to 1, with 1 
highlighting no variability in prediction and thus no uncertainty for the 
whole domain. 

Land-Use Regression models. 
More advanced exposure estimation techniques include Land-Use 

Regression (LUR) models. For instance, LUR models are used to pre-
dict air pollutant concentrations at unmonitored sites based on regres-
sion models of geo-referenced covariates that predict observed data in 
monitoring sites (Beelen et al., 2009). LUR modelling employs statistical 
methods to combine data from air pollution measurements with data 
from Geographic Information Systems to explain spatial concentration 

variations (Hoek et al., 2008). A LUR model can characterize the spatial 
variability of air pollutants considering other information, such as 
roadside dispersion profiles. The model performance is limited by the 
number and the spatial distribution of sampling sites (Basagana et al., 
2012; Wang et al., 2012). Kerckhoffs et al. (2015) applied LUR to predict 
O3 levels in the Netherlands. They found that O3 levels were highly 
correlated with NO and moderately with fine particles. They built a LUR 
model including small-scale traffic, large-scale address density, urban 
green and a regional indicator that was able to explain 71% of the spatial 
variation in summer average O3concentrations. 

2.3. Machine Learning algorithms 

Spatial linear LUR is commonly used for long-term modelling of air 
pollution in support of exposure assessment. However, Machine 
Learning methods, with spatio-temporal modelling, provide more ac-
curate exposure metrics than LUR in modelling human exposures for 
epidemiological studies (Ren et al., 2020). Ren et al. (2020) and Requia 
et al. (2020) have compared different Machine Learning algorithms to 
model the relationship between dependent variables and predictor 
variables to fill in the missing values, in order to estimate the daily 
maximum 8-h mean O3 concentrations at high spatial resolution (1 × 1 
km grid cell) across the United States: linear regression models (i.e., 
Multiple Linear Regression, Ridge regression, Elastic Net regularization, 
Principal Component Regression, Partial Least Squares Regression) and 
non-linear modelling options (i.e., Lazy Learning, k-Nearest Neighbors, 
Kernel Trick, Support Vector Regression, Artificial Neural Networks, 
Artificial Neural Networks, Deep Neural Networks, Decision Trees, 
Regression Trees, Random Forest, and Extreme Gradient Boosting). 

The non-linear Machine Learning methods led to higher accuracy of 
predictions compared to linear LUR i.e., 10–40% decrease of predicted 
RMSE (Ren et al., 2020). By applying three Machine Learning algorithms 
(neural network, random forest, and gradient boosting) Requia et al. 
(2020) obtained high model performance (r2 = 0.86–0.90), and the best 
performance was observed during summer (r2 = 0.88) in the United 
States. The performance of the Machine Learning algorithms depends on 
the location and O3concentration, therefore it recommended to apply a 
hybrid model instead of a single model (Ren et al., 2020). 

2.4. Deterministic approach 

Chemical transport models. 
Because O3 is a highly reactive trace gas, estimates of its contribution 

to climate forcing must rely on global chemistry-transport models 
(Derwent, 2020). Atmospheric chemical transport models (CTMs) are 
used to simulate the formation, removal and transport of O3 (Lamarque 
et al., 2013) into the troposphere. These models were formulated to 
quantify the impact of air pollutant emissions on the chemical compo-
sition of the atmosphere and corresponding consequences on the envi-
ronment (Gupta and Mohan, 2015). The reliability of the models 
increases with increasing temporal and spatial resolution of input data, 
such as emission inventory (Karlický et al., 2017). The key limitations of 
CTMs include the requirements of high computational resources and 
data, and good knowledge about the atmospheric processes and source 
of air pollution (Tong et al., 2011). Furthermore, CTMs tend to under-
estimate the magnitude of fluctuations on shorter temporary scales with 
the possibility of overestimating during periods of extensive cloud cover 
(Pal et al., 2014). Many studies have used computer numerical models 
implemented at regional (or even global) scales to supplement the 
missing information from in-situ measurements (Sicard et al., 2021b). In 
the past decades, the importance of these numerical models has been 
increasingly recognized and numerous air dispersion or air quality 
models were developed at various spatial scales to assist in under-
standing, controlling, and forecastingair pollution (Miranda et al., 
2015). CTMs are numerical models that simulate over a given region the 
atmospheric chemistry taking into account four main processes: i) 
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assessment of natural and anthropogenic emissions ii) atmospheric 
transport, iii) chemical production/destruction and iv) losses to surface 
by dry deposition. They are widely used to estimate the concentration of 
gases in the atmosphere at different temporal and spatial scales and have 
been successfully applied to air pollution research and air quality 
management at a regional scale worldwide (e.g.,Reis et al., 2005; Haase 
et al., 2014; De Marco et al., 2020). 

CTMs have been used in China, covering wholecountry or specific 
regions (Hu et al., 2015; Li et al., 2018; Quennehen, 2008). However, the 
representation of air quality and meteorology over Asia is still challen-
gingbecause of complex physical and meteorological conditions of this 
area, characterized by the monsoon system and large uncertainty inthe 
anthropogenic emissions (Sicard et al., 2021b). Nevertheless, CTMs are 
widely used to study air quality over Asia. For instance, Hu et al. (2015) 
applied the Community Multi-scale Air Quality (CMAQ) and Weather 
Research Forecasting (WRF) modelling system to predict air pollutant 
concentrations for the whole of China. The results showed an over-
estimation of 1-h or 8-h O3 average, due probably to the coarse hori-
zontal resolution (36 km). A modified WRF/CMAQ experiment was 
performedto simulate O3 in winter (December 2014–February 2015) 
and summer (June–August 2015) for the entire Sichuan Basin (Qiao 
et al., 2019). The 1-h and 8-h O3 averages were both greatly 
over-predicted in winter, but the model performance was acceptable in 
summer when the photochemical production of O3since anthropogenic 
emissions should be strongest in the basin (Qiao et al., 2019). The 
WRF-CMAQ model was used in India with a different spatial resolution 
for emissions and meteorological inputs (e.g., 36 km) to assess source 
and species sensitivities of ground-level O3 concentrations (Sharma 
et al., 2016). In the framework of the Hemispheric Transport of Air 
Pollution (HTAP) phase 2 experiment, simulations of O3 and its pre-
cursors were conducted using the updated version-2 (HTAP-v2) emis-
sion inventory and the offline global chemistry transport model 
MOZART-4 (Surendran et al., 2015). Comparison between model sim-
ulations and surface/balloon-borne observations at several sites showed 
reasonable model performance, but some disagreement in O3 concen-
tration and seasonal variation over South Asia was still evident (Sure-
ndran et al., 2015). The WRF model, coupled with Chemistry (i.e., 
WRF-Chem) was used to simulate the spatial and seasonal variability of 
main physical and chemical variables over Asia for the year 2015 at 
8-km horizontal resolution and to estimate O3impacts on Asian forests 
(De Marco et al., 2020). Overall, WRF-Chem reproduced well the spatial 
and seasonal variability of tropospheric O3 content, with limited over-
estimation during the warm season (3–7%) and larger over-prediction 
(11–13%) during the cold period (Sicard et al., 2021b). Emissions 
ofNOx, methane, carbon monoxide and isoprene had the potential to 
contribute in a major way to model output uncertainties (Derwent, 
2020). 

In Europe, CTMs are used with resolution ranging between 12 and 
25 km for operational European wide applications (e.g.; Mues et al., 
2014; Anav et al., 2016), 4–10 km for application to a single country (e. 
g. Vieno et al., 2010; Baldasano et al., 2011; Hendriks et al., 2013) and 
reaching 1 km for some European regions (Pay et al., 2014). As an in-
crease in horizontal model resolution will quadratic or cubically in-
crease the computational costs and poses additional challenges 
concerning high-resolution input data and model formulation, it is 
important to reach a cost-effective compromise (an “optimum resolu-
tion”) in the trade-off between the model performance and computa-
tional cost. Projected changes in ground-level O3 vary considerably 
among models (Wild et al., 2012). Several studies have evaluated the 
impact of spatial model resolution on O3 production (e.g., Tie et al., 
2010; Lauwaet et al., 2013) as well as O3 precursors (Wałaszek et al., 
2018). In general, high-resolution simulations may provide a much 
better separation between regions defined by high concentrations of 
biogenic volatile organic compounds and high NOx levels (Pugh et al., 
2013). Tie et al. (2010) performed an experiment over United States to 
assess the impact of model resolution on simulated air quality; they used 

a domain of 36, 12, and 4 km2respectively, finding that the 36-km2 

resolution leads to an under-prediction of daily maximum 8-h O3 aver-
ages, and an over-prediction of daily minimum 8-h O3 averages (Tie 
et al., 2010). Otherstudies support the finding that modelled O3 for-
mation systematically increases with the resolution for regional and 
global scale applications (Wild and Prather, 2006). Evaluations of 
global, hemispheric, and regional CTMs show that regional models 
typically perform better (van Loon and Coauthors, 2007; Simpson et al., 
2014). 

In Europe, long-term O3 simulations from seven regional air quality 
models (i.e., the Unified EMEP model, LOTOS-EUROS, CHIMERE, RCG, 
MATCH, DEHM, and TM5)were inter-compared and compared to O3 
measurements within the framework of the EuroDelta experiment (van 
Loon and Coauthors, 2007; Colette et al., 2011). This study clearly 
showed that increasing model resolution is advantageous for European 
scale applications and that moving from a resolution of 50 km in favour 
of a resolution between 10 and 20 km is practical and worthwhile. With 
increasing resolution of the meteorological model and emission in-
ventories, andadjustment of CTM process descriptions and parameteri-
zations to this higher resolution, an improved performance of CTMs 
model is expected (Schaap et al., 2015). The performance of the different 
models to simulate O3 fields is compared and in general the models 
reproduce the main features of the O3 diurnal cycle, even if over-
estimating daytime O3. LOTOS-EUROS and RCG have a more pro-
nounced diurnal cycle variation than observations, in contrast with 
TM5. CHIMERE has a large positive bias, which can be explained by a 
systematic bias in boundary conditions. 

Regional chemistry-climate models at coarse horizontal resolution 
(e.g., 36–50 km) are often unable to resolve the local features influ-
encing the chemical transformation and poorly reproduce the ground 
observations (Schaap et al., 2015). On the other hand, a weakness linked 
to regional models is their high time and resources consumption. Indeed, 
the run of a single model requires from weeks to months to have a final 
output. 

In recent years, researchers have focused their attention on advanced 
models like ensemble models, which showed better performance than 
standard single CTMs (Gong &Ordieres-Meré, 2016). Singh et al. (2013) 
used the ensemble trees to predict air quality, applying meteorological 
parameters as estimators. The methodology to assess the model perfor-
mance was based on classification and regression. 

Recently a new approach was developed to integrate CTM pre-
dictions and measures, the so-called Regionalized Air Quality Model 
Performance approach, using the Bayesian Maximum Entropy frame-
work (DeLang et al., 2021). Thus, estimates are produced that put pri-
ority on observations and take advantage of air quality model 
predictions based on how well they reproduce the observed values. 
Spatial fields generated from this approach provide an observation and 
CTM informed representation of O3 across space/time that is more ac-
curate and precise than relying only on observation data. This was 
especially true for locations away from monitoring stations. 

2.5. Chemistry-climate models 

In the climate models, physical atmospheric processes are calcu-
latedby solving equations that describe fluid flow and radiative transfer, 
which can not only respond to changes in greenhouse gas concentra-
tions, solar output, or other forcing but also generate their internal 
meteorological variability (Flato et al., 2014). Chemistry-climate 
models, or composition-climate models (CCMs), represent the most 
complex models in this family, where the chemically driven changes in 
radiatively active gases and aerosols (e.g. O3, methane, sulfates) influ-
ence the model radiation scheme, thus chemistry directly influences 
climate through its direct and indirect effects (O’Connor et al., 2015). 
The use of CCMs with tropospheric chemistry and aerosols is a relatively 
recent development (Morgenstern et al., 2017), whereas coupling of 
upper atmosphere chemistry to climate has a much longer history due to 
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the increased importance of chemically active compounds for heating 
rates in the stratosphere (Morgenstern et al., 2017). A less complex 
model than the CCM is the chemistry CTM (Chemical Transport Model), 
where the chemistry is affected by the climate changes from the radia-
tive and dynamical parts of the model but the chemically driven changes 
in radiatively active gases and aerosols do not subsequently affect 
climate. This type of model was the first step in coupling tropospheric 
chemistry to physical climate models (Roelofs and Lelieveld, 1997), and 
it is still occasionally used (Lamarque et al., 2013). 

2.6. Chemical reanalyses and ensemble approaches 

Applications of chemical ensemblesinclude comprehensive spatio- 
temporal evaluation of independent models, such as those developed 
in the framework of the Atmospheric Chemistry and Climate Model 
Intercomparison Project (ACCMIP; Yang et al., 2012) and CCMI (Mor-
genstern et al., 2018). In their study the ACCMIP ensemble O3 simula-
tions were evaluated using a chemical reanalysis, complementing the 
use of individual measurements for such a purpose. The chemical 
reanalyses can also be used as an input to meteorological reanalyses, as 
for radiation calculations (Dee et al., 2011), and can provide boundary 
conditions to regional-scale models and to analyze particular pollution 
events such as those associated with heatwaves or large-scale forest fires 
(Huijnen et al., 2012). Finally, they can be used as a reference to identify 
to what extent particular periods and regions deviate from climatology, 
as provided by the reanalysis, for instance as also discussed in the series 
of the “State of the Climate” (Flemming and InnesA, 2018). 

The global chemistry models developed under the ACCMIP project 
were used by Sicard et al. (2017) to determine the impacts of O3on 
forests productivity at the global level, in four climate scenarios RCPs. 
ACCMIP models were widely validated and used to evaluate projected 
changes in atmospheric chemistry and air quality under different 
emission and climate assumptions (Lamarque et al., 2010; Voulgarakis 
et al., 2013). Lamarque et al. (2013) provided the main characteristics of 
16 models and details for the ACCMIP simulations. The length of his-
torical and RCP simulations varies between models, but for all models, 
the historical runs cover a period centred around 2000, while the time 
slice of RCPs is centred around 2050 and 2100. 

Changes in emissions from one region can impact air quality over 
others, also affecting air-pollution-related health impacts due to inter-
continental transport (Zhang et al., 2017). In the framework of the Task 
Force on Hemispheric Transport of Air Pollution (TF-HTAP), Anenberg 
et al. (2009) found that reduction of foreign O3 precursor emissions can 
contribute to more than 50% of the avoided deaths by simultaneously 
reducing both domestic and foreign precursor emissions. A reduction in 
emissions in North America and Europe results in largest impacts as 
reduction of O3-related premature deaths in downwind regions as 
compared to within the source region (Anenberg et al., 2009). 

For most O3 indicators, the ensemble average identified “ensemble 
model”, almost always exhibits a superior skill compared to any indi-
vidual model, even though it has a too weak variability. The spread of 
ensemble-model values is fairly representative of the uncertainty of 
summertime O3 daily maxima, as the occurrence of the observation 
within the model values range has a rather flat distribution, when the 
bias is removed. For a given day, the probability distribution of occur-
rence of the observation is well represented by the distribution of the 
simulated values. 

2.7. Assessing model performance 

Statistical models are associated with a relative simplicity of the 
approaches suggested, even though they are associated with high level 
of uncertainties (LRM) and high RMSE (IDW, Kriging). Methodology 
with increasing level of complexity, such as co-Kriging, LUR and Ma-
chine Learning, showed lower RMSE, but on the other hand have much 
more information as input data requested. All the statistical models 

requires measured data, and have as output continuous layers of 
pollutant concentration over a specific domain. This request imply that 
the RMSE is lower when the distance between measurement sites is 
lower, decreasing in this way the uncertainties of the modelling 
approaches. 

The deterministic models are generally characterized by lower level 
of accuracy and higher accuracy, showing different level of complexity, 
that is increasing from Global model to Regional models. These type of 
models require high number of input data, such as emission inventories, 
and need pollutant dispersion module and meteorological model. On the 
same time they request high computation time and high storage room. 

Validation of the model performance from ground observations is, so 
far, still a problem due to the scarcity of monitored information (Sicard 
et al., 2021b). Recently, few authors have validated regional model data 
with in-situ, balloon-borne observations, and satellite observations (e.g., 
Im et al., 2015; Surendran et al., 2015; Ghim et al., 2017; Crippa et al., 
2019; Sicard et al., 2021b). The model performance can be evaluated 
over different seasons by using the Pearson’s correlation coefficient (r), 
mean bias (MB), the fractional bias (FB), and the Root-Mean-Square 
Error (RMSE). These statistics are successfully used in several studies 
for evaluating the performance of regional air quality models (e.g., Im 
et al., 2015; Ghim et al., 2017; Crippa et al., 2019; Sicard et al., 2021b). 
In case of in-situ data, we have to extract model results at the lowest 
model layer, and we calculate the performance statistics for each station. 
The Pearson’s coefficient allows estimating the spatial agreement be-
tween model and observations. For physical parameters, the MB pro-
vides the absolute bias of the model, with negative and positive values 
indicating respectively underestimation and overestimation by the 
model while the FB (in %) is used for the chemical variables, as in this 
case the absolute bias would be hard to interpret. The cross validation (e. 
g., 10-fold cross validation) is usually used. Here, we first divide the 
monitoring sites into 10 splits, and then we train the model with 90% of 
the data and predicted the O3 concentration at the remaining 10% of the 
sites. Then, the RMSE is commonly used to measure the differences 
between modelled values and the observations. 

We have summarized all pros and cons of the different approaches in 
Fig. 1, where in the same time we estimated the performance of each 
approach on the base of its accuracy, spatial resolution, complexity, 
temporal resolution, statistical vs. deterministic nature and data need. 
We gave a score to each of these parameters ranging between 0 and 1 
and at the end we have estimated the performance of the model on the 
basis of the area of the obtained graphs. Higher is the area, higher is the 
performance of the model. 

3. Ozone risk assessment 

3.1. Models for human health 

Acute exposures are characterized by high O3 concentrations for a 
relatively short-time period, within hours or days, while chronic expo-
sures involve lower O3 concentrations persisting, or recurring, over a 
longer period (Grulke et al., 2007; World Health Organization, 2008; 
Sicard et al., 2016b). To protect population, it was considered that the 
8-h guideline would protect against acute elevated 1-h O3 exposures 
(World Health Organization, 2008). The current O3human health met-
rics (SOMO35, i.e., the annual Sum Of daily maximum 8-h Means Over 
35 ppb, and the number of exceedances of daily maximum 8-h values 
greater than 60 ppb) consider only acute health effects (e.g., lung 
inflammation), and do not account for possible chronic effects at 
long-term O3 exposure levels below 35 ppb (World Health Organization, 
2013). 

In cities, PM2.5 and ground-level O3 have potentially the most sig-
nificant adverse effects on human health associated with respiratory and 
cardiovascular diseases and mortality, compared to other air pollutants 
(World Health Organization, 2013; Cohen et al., 2017). The Global 
Burden of Disease (GBD) Study reported 4.1 million disability-adjusted 
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life years (DALYs) in 2015 attributable to O3 exposure (Forouzanfar 
et al., 2016) that is estimated to provoke more than 0.7 million 
deathsper year worldwide (Anenberg et al., 2010). Short-term effects 
induced by the oxidative stress of this pollutant on the respiratory sys-
tem are well-established, particularly in people with pre-existing 
obstructive chronic pulmonary diseases (COPD) (Nuvolone et al., 
2018). The World health organization (World Health Organization, 
2013), theEuropean Council (Directive, 2008/50/EC), the Environ-
mental Protection Agency (US Federal Register, 2015) have set Ambient 
Air Quality Standards for the protection of human health (Table 2). For 
ground-level O3, China adopted in 2012 the Ambient Air Quality Stan-
dard of 80 ppb as maximum daily 8-h running average (Ministry of 
Environmental Protection, 2012) (Table 1). 

For the estimation of health effect, different methods or models are 
used. The more common methods for assessing the short-term effects of 
air pollution on human health is time-series analysis. The time-series 
analysis method is a simple and descriptive-statistical approach for O3 
modelling (Tian et al., 2020; Javanmardi et al., 2018). Time-series an-
alyses showed that O3 is associated with an increased risk of premature 
mortality, but currently, statistical models (including meta-analysis 
regression) are being developed to establish indicators of risk mortal-
ity or hospital admission from short-term O3 exposure (e.g. maximum 
daily 8-h mean concentration). Li et al. (2020) used two stages strategy 
to investigate the relationship between O3 exposure and years of life lost 
(YLL). For this, city-specific associations were calculated by generalized 

Fig. 1. Performance of the different approaches. A score was assigned on the basis of the characteristics of the suggested approach in terms of accuracy, spatial 
resolution, complexity, temporal resolution, statistical vs. deterministic nature and data need. The higher is the area the higher is supposed to be the model per-
formance and its applicability. 

Table 1 
Air quality standards for ozone in terms of target values for the protection of 
human health (World Health Organization, 2013; Directive, 2008/50/EC; US 
Federal Register, 2015; Ministry of Environmental Protection, 2012).  

Guideline WHO EU US China 

Maximum daily 8-h mean (ppb) 50 ppb 60 ppb 75 ppb 80 ppb  

Table 2 
Relative Risk for health outcomes, and people at risk (e.g., all ages or > 30 
years–old), for 10 μg m− 3 increase in daily maximum 8-h ozone mean-
concentrations with 95% confidence intervals (lag 0–1 days).  

Outcome - Region RR (95% CI) per 10 
μg/m3 

Ref. 

Mortality 
All-causes (all ages) - Europe 1.003 (1.001–1.004) (WHO, 2013) 
All-natural causes (>30 years) - France 1.009 (1.004–1.014) Sicard et al. 

(2019) 
All-cause mortality, summer (all ages)– 

United States 
1.007 (1.004–1.011) Bell et al. 

(2005) 
Cardiovascular diseases (all ages) - 

Europe 
1.005 (1.002–1.007) Gryparis et al. 

(2004) 
Cardiovascular diseases (>30 years)- 

Europe 
1.004 (1.003–1.005) (WHO, 2013) 

Respiratory diseases (all ages) - Europe 1.013 (1.007–1.015) Gryparis et al. 
(2004) 

Respiratory diseases (>30 years)- 
Europe 

1.014 (1.005–1.024) Héroux et al. 
(2015) 

Daily Hospital Admissions 
Chronic Obstructive Pulmonary Disease 

(all ages) - Europe 
1.009 (1.004–1.013) (WHO, 2013) 

Cardiovascular diseases (all ages) - 
Europe 

1.009 (1.005–1.013) Héroux et al. 
(2015) 

Respiratory diseases (all ages)- Europe 1.004 (1.001–1.008) Héroux et al. 
(2015) 

Respiratory diseases (15–64 years old) - 
Europe 

1.001 (0.991–1.012) (WHO, 2008) 

Respiratory diseases (≥65 years old) - 
Europe 

1.005 (0.998–1.012) (WHO, 2008) 

Myocardial infarction (ozone <70 
ppb)– United States 

0.998 (0.996–1.000) Yazdi et al. 
(2019) 

Pneumonia (ozone <70 ppb) – United 
States 

1.030 (1.028–1.032) Yazdi et al. 
(2019)  
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additive models (GAM). The family function of GAM is the Gaussian 
model (Guo et al., 2013). The daily observed YLL (95% CI) was esti-
mated by the following equation (1), and their sum divided by total 
non-accidental mortality was additional life gained per deceased people. 

∑1826

t=1
(YLLt)×

(
[O3]t − Target

)
× β (1)  

where YLLt and [O3]t are respectively the daily number of lost life years 
and the O3 concentration at the day t. Target and β are the concentration 
target of ozone and the national average relative change of YLL per 1 
μgm− 3 increase of ozone, respectively (Li et al., 2020). 

These statistical models relate mortality or hospital admission to 
data on air pollution, and weather, correcting by age, gender, socio-
economic indicators, race/ethnicity, etc. (Zanobetti and Schwartz, 
2008). For estimation of mortality and hospital admissions due to O3 
exposure some models need inputs such as baseline incidence (BI), 
relative risk (RR), specified population and 1-h or 8-h concentrations of 
O3. The BI use epidemiological models to estimate the occurrence of 
events in different population subsets like the evidence of events for 
patients with risk factors compared with those without risk factors 
(Nelson et al., 2015). Relative risk is the possibility of developing a 
disease following exposure to a pollutant. The RR is the attributable 
health risk related to people who have defined exposures and so it can be 
calculated by the equation (2). 

RR=
Probability  of  a  health  effect  when  exposed  to  air  pollution

Probability  of  a  health  effect  when  not  exposed
(2) 

The estimation of different diseases and mortality due to O3exposure 
is based on BI and RR, calculated from meta-analysis and/or epi-
demiologcal studies for hospital admissions and mortality due to car-
diovascular and respiratory diseases (World Health Organization, 
2013). Table 2 shows the different RR in the studies of ozone exposure 
and its effects on human health. 

Several models have been used to investigatethe effects of O3 expo-
sure on human health (Sicard et al., 2019; Yang et all, 2012; Jerrett 
et al., 2009; Gryparis et al., 2004). For instance, the AirQ software 
elaborated by the WHO Regional Office for Europe is widely used 
worldwide e.g., in Asia (Yang et al., 2020), Iran (Khaniabadi et al., 2018; 
Amoatey et al., 2019), and Europe (De Marco et al., 2009; Sicard et al., 
2019; Khaniabadi and Sicard, 2021). In this AirQ model the BI and RR 
are used as input for estimation of mortality and hospital admissions. 
The attributable proportion AP, defined as the fraction of health con-
sequences in a population exposed to ozone, is calculated as follows: 

AP=
∑

{[RR(c) − 1] × P(c)}
/ ∑

[RR(c)× P(c)] (3)  

Where RR(c) is the relative risk of a certain effect on health in category 

“c" (e.g., residential or industrial) of exposure that it is taken from the 
exposure-response functions from published epidemiological studies, 
being P(c) the number of individuals in the under exposure population. 
Table 3 shows some results of studies, published in the last decade, using 
AirQ model for estimating mortality due to O3 exposure in different 
countries. Almost all papers investigated cardiovascular and respiratory- 
related diseases with the RR suggested in Table 2. 

The O3 concentrations increased in most cities worldwide (on 
average: + 0.31 ppb year− 1 since 1990s), in particular + 0.33 ppb 
year− 1 in North America, + 0.68 ppb year− 1 in East Asia and +0.27 ppb 
year− 1 in Europe between 2005 and 2014 (Sicard, 2021). Between 2000 
and 2017, the annual O3-related number of premature deaths increased 
(+0.55 deaths per 106 inhabitants) in the EU-28 cities (Sicard et al., 
2021a). Knowlton et al. (2004) assessed changes in O3-related mortality 
in the 2050s compared with the 1990s using the coupled 
GCM/MM5/CMAQ models in the United States, and in the New York 
state. They found that climate change could increase regional summer 
O3-related mortality by a median of 4.5% in the 2050s compared with 
the 1990s, without including the populationgrowth, reaching a median 
of 59.9% when the increase in population at risk was considered. 

4. Models for plant ecosystems 

To protect vegetation, the current exposure index AOT40 assumes O3 
concentrations below 40 ppb, and do not account for possible chronic 
effects (Sicard et al., 2016b). 

To provide accurate impact metrics to protect human health and 
vegetation from adverse effects of O3, accurate hourly O3 concentrations 
are needed, and the models must reproduce well the spatial and seasonal 
O3 variability even for lower concentrations e.g., in cities. The perfor-
mance statistics have to be based on hourly data year-round. 

Apart from complementing atmospheric chemistry measurements 
and evaluating potential threats to human health, modelling activities 
are also applying to estimate the risk posed by these O3 levels to eco-
systems, particularly to vegetation. The adverse effects of O3 on plants 
were first identified in the 1950s (Ashmore, 2005). Ozone can reduce 
agricultural yield, mainly by the appearance of visible injury that re-
duces market value and the reduction of the yields due to decreased 
photosynthetic rates and accelerating leaf senescence (Feng et al., 2019; 
González-Fernández et al., 2016; Monga et al., 2015; Pleijel et al., 2019). 
There is also evidence of lower growth of tree species, reductions of the 
nutritional quality of pastures, reduction in the reproductive capacity of 
plants, and biodiversity changes in the species composition of pastures 
(Agathokleous et al., 2020; Alonso et al., 2014; Ashmore, 2005; Büker 
et al., 2015; Li et al., 2018; Sanz et al., 2016). 

The methodology for vegetation risk assessment was developed in 
the framework of the United Nations Economic Commission for Europe 
(UNECE) Convention on Long-range Transboundary Air Pollution 
(CLRTAP). Experimental studies in which vegetation is exposed to 

Table 3 
Number of cases attributed to exposure to ozone (O3) for mortality for all natural causes, cardiovascular diseases, and respiratory diseases, using AirQ software (95% 
Confidence Interval).  

Reference Location Time period Annual mean conc. (μg/ 
m3) 

Ozone-related premature 
deaths       
All-causes Cardiovascular 

diseases 
Respiratory 
diseases 

Rovira et al. (2020) Catalonia, Spain 2017 59.8 – – 9 (3–15) 
Bonyadi et al. (2020) Shirza, Iran 2017 51.6 122 (8–202) 85 (34–119) 45 (25–72) 
Du et al. (2019) Jinhua, China 2019 84.5 – – – 
Amoatey et al. (2019) Ahvaz, Iran 2015 79.2 128 (85–171) 156 (0–233) 41 (21–61) 
Sicard et al. (2019) Marseille, France 2015 55.0 169 (76,261) 65 (12–117) 20 (10–32) 
Asl et al. (2018) Hamadan, Iran 2014–2015 73.0 52 (35–86) 36.5 (15–50) 19.1 (11–22) 
Sicard et al. (2019) Rome, Italy 2015 41.5 614 (372–853) 69 (51–86) 37 (14–59) 
Khaniabadi et al. (2018) Kermanshah, Iran 2014–2015 83.2 – 83 (0–123) 32 (13–53) 
Hadei et al. (2013) Tehran, Iran 2015–2016 42.1 341 (228–565) 272 (122–419) 123 (68–142) 
Jeong (2013) Suwon, Korea 2011 43.0 43 (29–71) 16 (6–22) 14 (7–16)  
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different concentrations of ozone are used to obtain a relationship be-
tween concentration of pollutants in the air and their effects on plants 
(CLRTAP, 2017). When just the concentration (exposure) is used to 
establish this relationship, the atmospheric chemistry simulations alone 
are sufficient to assess the risk that O3 poses to vegetation at regional 
scale, testing the modelled concentrations against established O3-level 
thresholds. This is a very useful approach for large scales since it is 
possible to apply for most vegetation types (Sicard et al., 2019). How-
ever, in the framework of the CLRTAP, vegetation risk assessment is 
preferably performed by calculating the exceeded dose of O3 absorbed 
by the plant stomata over anexperimentallyset threshold, the so-called 
phytotoxic ozone dose (POD) (CLRTAP, 2017). For POD, two steps are 
required: a CTM accounting for the surface concentrations and a 
parameterization which allow to estimate the vegetation absorption of 
O3 (occurringthrough plant stomata). 

Resistance-analogue models are commonly applied to estimate 
ozone transfer from the atmosphere to vegetation. One of the most used 
models to estimate ozone uptake by plants is the DO3SE model (Depo-
sition of O3 for Stomatal Exchange; Jarvis, 1976; Büker et al., 2012), a 
multiplicative algorithm. DO3SE is currently included within the Euro-
pean Monitoring and Evaluation Programme (EMEP; Simpson et al., 
2012) photo-oxidant CTM, which simulations are used in the framework 
of CLRTAP to inform the European strategies for pollutant emission 
control (Simpson et al., 2007). However, for using this method, the 
threshold for different plant species or vegetation types must be defined, 
as well as the species-specific parameterization of the DO3SE model. De 
Marco et al. (2020) applied a CTM over Asia, to assess the O3 risk for 
forests, comparing both metrics to estimate potential ozone damage: 
exposure- and flux-based. Using POD allowed including in this analysis 
some limiting conditions of plant activity, such as soil water content, 
which is key for risk assessment in a context of climate change. In 
Europe, the application of the DO3SEmodel to calculate POD in the-
context of climate change allowed toalso consider the implications of a 
changing ozone concentration profile in future scenarios (Hayes et al., 
2019). 

The above-exposed methodologiesare empirical approaches to 
modelO3effects that can be completed with other empirical plant- 
response functions and applied to different environmental conditions 
(De Vries et al., 2017). However, new modelling approaches based on 
mathematical simulations of the processes behind the pollutant effects 
are currently being developed (Kinose et al., 2020; Schauberger et al., 
2019). These process-based models are considered veryreliable tools for 
simulating the effects of O3on biological dynamics on novel conditions 
including air pollution and climate scenarios (Evans, 2012) that can 
complement the current approach. 

5. Conclusive remarksand future directions 

Due to the impossibility to measure surface O3concentrationsin large 
regions, for economic and practical reasons, the use of modelling is very 
important and highly suggested methodology to define the risk assess-
ment for ecosystems and human health. In general, the geostatistical 
approach is relatively simple, requiring low informatics and storage 
resources. It is strongly limited by the availability of data on the study 
area, but this limit can be minimized by the use of the co-kriging 
methodology, where other variables, spatially and temporally corre-
lated with O3 concentration, can be used. Many different types of 
models are available to map appropriately tropospheric O3starting from 
the simple geostatistical model to more complex CTM. The choice of a 
specific model instead of another one dependsonthe available data and 
onthe final objective of the investigation. Indeed,O3 risk assessment can 
be obtained at global, regional or local scale using different resolution 
levels. Increasing the resolution level can increase the uncertainties 
level, but a moderate resolution improvement can improve the infor-
mation released. While geostatistical model use is not the time or 
computation resources needed, they can be considered as “quick”, but 

the ozone distribution in areas not covered by measurements is highly 
uncertain with ordinary methodology and less uncertain when co- 
variables are used. 
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