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Abstract
Two	 simplifying	 hypotheses	 have	 been	 proposed	 for	whole‐plant	 respiration.	One	
links	respiration	to	photosynthesis;	the	other	to	biomass.	Using	a	first‐principles	car‐
bon	balance	model	with	a	prescribed	live	woody	biomass	turnover,	applied	at	a	for‐
est	research	site	where	multidecadal	measurements	are	available	for	comparison,	we	
show	that	if	turnover	is	fast	the	accumulation	of	respiring	biomass	is	low	and	respira‐
tion	depends	primarily	on	photosynthesis;	while	if	turnover	is	slow	the	accumulation	
of	 respiring	biomass	 is	high	and	respiration	depends	primarily	on	biomass.	But	 the	
first	scenario	is	inconsistent	with	evidence	for	substantial	carry‐over	of	fixed	carbon	
between	years,	while	the	second	implies	far	too	great	an	increase	in	respiration	dur‐
ing	stand	development—leading	to	depleted	carbohydrate	reserves	and	an	unrealisti‐
cally	high	mortality	risk.	These	two	mutually	incompatible	hypotheses	are	thus	both	
incorrect.	Respiration	is	not	 linearly	related	either	to	photosynthesis	or	to	biomass,	
but	it	is	more	strongly	controlled	by	recent	photosynthates	(and	reserve	availability)	
than	by	total	biomass.
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1  | INTRODUC TION

The	amount	of	carbon	that	accumulates	 in	actively	growing	stands	of	
vegetation	depends	on	the	balance	of	photosynthesis	(gross	primary	pro‐
duction,	P)	and	whole‐plant	(autotrophic)	respiration	(R).	The	difference	
between	these	fluxes	is	the	net	primary	production	(Pn).	Most	annual	Pn 
is	allocated	to	structural	growth	(G),	but	some	is	stored	as	nonstructural	
carbohydrates	 (NSC,	mostly	starch	and	sugars),	some	is	released	back	
to	the	atmosphere	in	the	form	of	biogenic	volatile	organic	compounds	
(BVOCs),	and	some	is	exuded	to	the	rhizosphere	(Chapin	et	al.,	2006).	
The	fraction	of	P	that	accumulates	in	biomass,	and	the	fraction	that	re‐
turns	to	the	atmosphere	through	plant	metabolism,	are	crucial	quanti‐
ties	that	determine	the	sign	and	magnitude	of	the	global	climate‐carbon	
feedback—which	remains	one	of	the	greatest	sources	of	uncertainty	in	
the	global	 carbon	cycle	 (Friedlingstein	et	 al.,	 2014).	But	despite	many	
ecophysiological	studies	aiming	to	understand	Pn and R	dynamics	during	
stand	development,	a	general	understanding	is	still	lacking.

Some	authors	have	hypothesized	a	constant	Pn:P	(carbon	use	effi‐
ciency,	equivalent	to	1	−	(R:P))	ratio,	with	R	tightly	constrained	by	P ir‐
respective	of	biomass,	climate,	tree	species	and	stand	age	(e.g.	Gifford,	
2003;	Van	Oijen,	Schapendonk,	&	Hoglind,	2010).	Waring,	Landsberg,	
and	Williams	(1998,	W98	hereafter)	indicated	a	universal	Pn:P	of	~0.5.	
Since,	ultimately,	R	depends	on	the	matter	produced	by	photosynthe‐
sis,	Gifford	(2003)	suggested	that	these	two	processes	must	be	tightly	
balanced	over	the	longer	term—making	R	proportional	to	P,	consistent	
with	W98.	He	argued	that	prescribing	Pn	(or	R)	as	a	constant	fraction	
of	P	could	be	a	simpler,	and	potentially	more	accurate,	alternative	to	
explicit,	process‐based	modelling	of	R.	A	number	of	 land	vegetation	
models	(reviewed	in	Collalti	&	Prentice,	2019)	adopt	this	simplification.

An	 alternative	 hypothesis,	 grounded	 in	 metabolic	 scaling	 theory,	
suggests	that	R	should	scale	with	biomass	following	a	power	law,	Y = aXb 
(West,	Brown,	&	Enquist,	1999).	According	to	some	studies	 (e.g.	Reich,	
Tjoelker,	Machado,	&	Oleksyn,	2006,	R06	hereafter),	R	(Y)	scales	isomet‐
rically	(b~1)	with	whole‐plant	carbon	(C)	or	nitrogen	(N)	contents	(X),	and	
this	scaling	is	similar	within	and	among	different	species,	and	irrespective	
of	environmental	and	climatic	conditions—which	might	influence	the	nor‐
malization	constant	(a),	but	not	the	exponent	(b).	Isometric	scaling	of	R	with	
biomass	was	assumed	in	the	traditional	view	of	forest	dynamics	set	out	
for	example,	by	Kira	and	Shidei	(1967)	and	Odum	(1969).	In	the	absence	
of	major	disturbances,	if	R	increases	in	parallel	with	biomass,	then	Pn nec‐
essarily	declines—because	ultimately	P	 cannot	 increase	 indefinitely,	but	
rather	stabilizes	at	canopy	closure.	Mori	et	al.	(2010),	however,	indicated	
that	biomass	and	R	are	isometrically	related	only	in	young	trees,	tending	
towards	b~3/4	in	mature	trees.	A	general	value	of	3/5	has	also	been	pro‐
posed	(Michaletz,	Cheng,	Kerkhoff,	&	Enquist,	2014).	But	however	it	is	in‐
terpreted,	this	scaling	hypothesis	implies	that	R	depends	on	biomass,	and	
is	related	to	P	only	to	the	extent	that	P	and	biomass	vary	together.

Although	many	terrestrial	vegetation	models	simulate	plant	respira‐
tion	assuming	R	to	be	a	fixed	fraction	of	P,	others	more	explicitly	couple	
R	to	biomass	and	thus	only	indirectly	to	P.	The	most	widely	used	(and	
observationally	supported)	mechanistic	approach,	also	adopted	here,	
divides	R	into	growth	(RG)	and	maintenance	(RM)	components	(McCree,	
1970;	Thornley,	1970).	RG	is	considered	to	be	a	fixed	fraction	of	new	

tissue	growth,	independent	of	temperature,	the	fraction	varying	only	
with	the	cost	of	building	the	compounds	constituting	the	new	tissue	
(Penning	de	Vries,	Brunsting,	&	van	Laar,	1974).	Temperature,	substrate	
availability	and	the	demand	for	respiratory	products	are	considered	to	
control	RM	 (Cannell	&	Thornley,	2000).	Several	 studies	have	 investi‐
gated	the	effects	of	short‐	and	long‐term	changes	in	temperature	on	
RM,	mostly	at	the	leaf	level	(e.g.	Heskel	et	al.,	2016;	Huntingford	et	al.,	
2017).	The	nature	of	the	temperature	responses	and	the	acclimation	
of	RM	are	important	and	much‐discussed	issues,	but	they	are	not	con‐
sidered	further	here.	In	contrast,	the	effects	on	respiration	of	woody	
biomass	(the	substrate),	its	accumulation	and	the	transition	rate	of	re‐
spiring	sapwood	into	nonrespiring	heartwood,	have	received	relatively	
little	attention	(Kuptz,	Fleischman,	Matyssek,	&	Grams,	2011;	Tjoelker,	
Oleksyn,	&	Reich,	1999).	These	latter	processes	are	the	focus	here.

The	fixed‐ratio	hypothesis	of	W98	and	the	scaling	hypothesis	of	
R06	could	both	be	used—at	least	in	principle,	across	the	20	orders	of	
magnitude	variation	in	plant	mass—to	estimate	R and Pn	without	the	
need	for	explicit	process‐based	modelling	of	R	(McMurtrie	et	al.,	2008;	
Price,	Gilooly,	Allen,	Weitz,	&	Niklas,	2010).	However,	they	may	yield	
quite	different	results,	and	both	hypotheses	(and	their	supposed	un‐
derlying	mechanisms)	have	been	subject	 to	criticism	 (e.g.	Agutter	&	
Tuszynski,	2011;	Collalti	&	Prentice,	2019;	Collalti	et	al.,	2018,	2019;	
Keith,	Mackey,	 Berry,	 Lindenmayer,	 &	 Gibbons,	 2010;	 Kozłowski	 &	
Konarzewski,	2005;	Mäkelä	&	Valentine,	2001;	Medlyn	&	Dewar,	1999;	
O'Connor	et	al.,	2007;	Price	et	al.,	2012).	To	our	knowledge,	there	has	
been	no	previous	attempt	to	compare	these	two	hypotheses	directly,	
and	their	consequences	for	forest	carbon	balance	during	stand	devel‐
opment,	and	in	the	same	modelling	framework.	We	attempt	to	fill	this	
gap	by	providing	illustrative	simulations	on	the	long‐term	trajectories	
of	R,	Pn and Pn:P,	highlighting	and	discussing	the	large	uncertainty	sur‐
rounding	this	issue.	The	simulations	are	based	on	the	first	principles	of	
mass	balance,	as	adopted	 in	most	contemporary	vegetation	models,	
and	implemented	here	into	a	process‐based,	ecophysiological	model	
that	has	been	tested	against	detailed	time	series	observations	 in	an	
intensively	monitored	research	forest	site.	We	show	how	alternative	
assumptions	about	the	live	woody	turnover	(live	woody	biomass	is	the	
metabolically	active	fraction	of	sapwood:	see	Supporting	Information)	
map	on	to	the	two	alternative	hypotheses,	while	seeking	an	answer	to	
the	pivotal	question:	 is	R	a	function	of	photosynthesis	alone	(W98's	
hypothesis),	or	of	biomass	alone	(R06's	hypothesis)?	Insight	into	these	
conflicting	hypotheses	on	plant	respiration	would	help	towards	a	bet‐
ter	mechanistic	understanding	and	correct	quantification	of	the	stocks	
and	fluxes	that	determine	the	carbon	balance	of	forests.

2  | MATERIAL S AND METHODS

2.1 | Theoretical framework

A	general	equation	describing	autotrophic	respiration	(R)	is:

where	P and Pn	 are	 gross	 and	 net	 primary	 production,	G	 is	 struc‐
tural	and	litter	biomass	production	and	GR	is	the	flux	to	NSC	reserves	

(1)R=P−Pn=P− (G+GR),
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and	 secondary	 compounds	 including,	 exudates	 and	 BVOCs	 (all	 in	
g	C	ground	area−1	time−1).	If	R	is	further	decomposed	into	growth	(RG)	
and	maintenance	 (RM)	 respiration	 (McCree,	1970;	Thornley,	1970),	
then:

where	gR and mR	are	the	growth	and	maintenance	respiration	co‐
efficients	(i.e.	respiratory	CO2	released	per	unit	biomass	produced	
by	growth	and	by	the	maintenance	of	the	existing	biomass:	both,	
per	 unit	 time	 and	 unit	 mass;	 Penning	 de	 Vries,	 1975),	 and	Wlive 
is	 the	 living	 biomass	 (Amthor,	 2000).	Wlive can be broken down 
further:

where	Wlive_woody and Wgreen	are	the	biomass	of	live	woody	pools	(liv‐
ing	cells	in	stem,	branches	and	coarse	roots)	and	nonwoody	tissues	
(leaves	and	fine	roots)	respectively.	Because	plant	tissues	require	N	
as	 a	 component	 of	 the	 enzymes	 that	 sustain	metabolic	 processes	
(including	respiration),	living	biomass	is	often	expressed	in	nitrogen	
units,	g	N/ground	area	(Cannell	&	Thornley,	2000),	while	respiration	
is	expressed	in	carbon	units.	Then	mR	is	in	units	of	g	C	g	N

−1	time−1 
(Penning	 de	 Vries,	 1975).	 Temporal	 changes	 in	Wlive_woody can be 
summarized	by	first‐order	biochemical	kinetics:

where	Glive_woody	 is	 the	 part	 of	G	 allocated	 to	 live	woody,	φ con‐
verts	carbon	to	nitrogen	content	(g	N/g	C)	and	τ	is	the	live	woody	
turnover	rate	per	unit	time	(t).	A	similar	expression	can	be	written	

for	Wgreen.	 The	 first	 term	 on	 the	 right‐hand	 side	 of	 Equation	 (4)	
represents	the	‘incoming’	flux	of	new	living	cells;	while	the	second	
term	represents	 the	 ‘outgoing’	 flux	of	 living	cells	 that	die	and	be‐
come	metabolically	 inactive.	But	while	Wgreen	may	be	only	a	small	
fraction	of	 total	 forest	 biomass,	 not	 changing	much	 after	 canopy	
closure,	Wlive_woody	(as	also	total	W)	becomes	large	during	forest	de‐
velopment	and	is	potentially	a	strong	driver	of	R	(Reich	et	al.,	2008).	
However	interpreted	and	wherever	applied,	this	general	approach	
including	a	turnover	rate	parameter	(τ)	is	equally	valid	for	any	mass‐,	
area‐	or	volume‐based	analyses	(Thornley	&	Cannell,	2000).

Setting	 τ = 1 year−1	 in	 Equation	 (4)	 would	 imply	 a	 tight	 cou‐
pling	between	 the	previous	year's	growth	and	 the	current	year's	
respiration	flux—as	suggested	by	Gifford	(2003)—and	yields	a	close	
approximation	 to	 the	W98	 assumption	 of	 a	 fixed	 ratio	 between	
Pn and P,	 thus	 cancelling,	 on	 an	 annual	 scale,	 any	 effect	 of	 bio‐
mass	accumulation.	The	implication	of	a	1	year	lag	between	carbon	
fixation	 and	 respiration	 in	 woody	 compounds	 is	 consistent	 with	
the	 findings	 of	 Amthor	 (2000),	 Kagawa,	 Sugimoto	 and	Maximov	
(2006a,	2006b),	Gough	et	al.	(2008,	2009)	Richardson	et	al.	(2015)	
and	Richardson	et	al.	(2013)	of	a	physiological	asynchrony	by	about	
1	 year	 between	P	 and	 growth	 (and	 thus	 on	 growth	 and	mainte‐
nance	respiration).

Alternatively,	setting	τ = 0.1 year−1	would	 imply	that	most	new	
sapwood	cells	 live	 for	many	years,	 and	would	closely	approximate	
the	 R06	 assumption	 of	 proportionality	 between	 R	 and	 biomass.	
Thus,	the	amount	of	respiring	biomass	is	regulated	by	the	amount	of	
substrate	that	is	produced	each	year,	forming	new	sapwood,	versus	
the	 amount	 that	 is	 converted	 into	nonliving	 tissues	 and	no	 longer	
involved	in	metabolism;	the	balance	of	these	processes	being	con‐
trolled	by	 τ	 (see	proofs‐of‐concept	 in	Figure	1a,b	 and	Table	1,	 for	
elaboration).

(2)R=RG+RM=gRG+mRWlive,

(3)Wlive=Wlive_woody+Wgreen,

(4)

dWlive_woody

dt
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

relative change

=� ⋅Glive_woody

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

incoming flux

−Wlive_woody ⋅�

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

outgoing flux

,

F I G U R E  1  Proofs‐of‐concept	for	
total	RM	(a)	and	live	woody	biomass	
accumulation	(b)	over	the	course	of	
forest	development	(time)	and	increases	
in	size,	assuming	different	live	wood	
turnover	(τ,	year–1)	rate	values,	from	1	
(W98)	to	0.1	year–1	(R06)	including	two	
intermediate	values	at	0.5	and	0.7	year–1 
(e.g.	White	et	al.,	2000).	RM_green	(i.e.	
leaf	and	fine	root	RM)	was	assumed	
constant	over	time	and	arbitrarily	
equal	to	2.	Summing	up	RM_wood and 
RM_green	gives	the	total	RM.	Initial	woody	
biomass	was	arbitrarily	considered	
equal	to	10,	new	annual	live	wood	was	
also	arbitrarily	considered	equal	to	10,	
mR	=	0.2	(RM	=	(Wlive_woody + Wgreen)	×	mR; 
see	Equation	3).	(b)	Initial	woody	
biomass	was	arbitrarily	considered	
equal	to	10,	new	annual	live	wood	was	
arbitrarily	considered	equal	to	10.	The	
model	is:	Wlive_woody	(t+1) = Wlive_woody	(t) 
+ ΔWinlive_woody (t+1)

−ΔWoutdead_woody (t+1)
	(see	

Equation	4	in	the	main	text)	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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Because	 carbon	 supply	 (photosynthesis)	 and	 carbon	metabolic	
demand	 (respiration)	 are	 not	 necessarily	 synchronized,	 the	 model	
assumes	that	temporary	carbon	imbalances	between	P and R	(imply‐
ing Pn	<	0;	Roxburgh,	Berry,	Buckley,	Barnes,	&	Roderick,	2005)	are	

met	by	the	remobilization	or	recycling	of	NSC	stored	during	previous	
year(s)—so	long	as	the	NSC	pool	is	not	completely	emptied	(the	car‐
bon	starvation	hypothesis;	McDowell	et	al.,	2008).	A	full	description	
of	the	modelled	NSC	dynamics	is	provided	in	Box	1.

τ level Corresponding underlying assumption Reference

τ = 0.1 Low	turnover	rate,	which	implies	only	
accumulation	of	respiring	biomass	(i.e.	
R∝biomass

Reich	et	al.	(2006)

τ = 1 High	turnover	rate,	with	death	of	cells	annu‐
ally	equalling	live	cell	production	(i.e.	R∝P)

Waring	et	al.	(1998)

0.1 < τ < 1 Intermediate	turnover	rate e.g.	White	et	al.	
(2000);	see	Box	2

τ = 0 Functionally	impossible,	because	it	would	
imply	no	mortality	of	cells

—

τ > 1 Physically	impossible,	because	turnover	
would	exceed	the	number	of	available	living	
cells

—

TA B L E  1  Underlying	modelling	
assumptions	adopted	in	the	analysis

BOX 1 The function and dynamics of NSC

Nonstructural	carbohydrate	is	a	surprisingly	poorly	known	component	of	the	whole‐tree	carbon	balance,	and	commonly	disregarded	in	
models	(Merganičová	et	al.,	2019;	Schiestl‐Aalto	et	al.,	2019).	However,	the	ability	of	trees	to	prioritize	storage	over	growth	depends	
on	the	role	of	NSC	in	allowing	temporal	asynchrony	between	carbon	demand	and	carbon	supply	(Fatichi,	Leunzinger,	&	Kӧrner,	2014).	
Such	imbalances	are	assumed	to	be	buffered	by	drawing	down	NSC	reserves.	Recent	studies	support	this	assumption,	showing	that	
during	periods	of	negative	carbon	balance	(for	example	during	the	dormant	season,	periods	of	stress	or	natural	or	artificially	induced	
defoliation	episodes)	NSC	is	remobilized	and	transported	from	the	sites	of	phloem	loading,	while	during	periods	of	positive	carbon	bal‐
ance	plants	preferentially	allocate	recently	assimilated	carbon	to	replenish	NSC.	Only	afterwards	is	‘new’	carbon	used	to	sustain	growth	
(Huang	et	al.,	2019;	Weber	et	al.,	2018).	Because	ultimately	plant	survival	depends	more	on	metabolic	carbon	demands	than	on	growth,	
some	have	argued	that	all	positive	carbon	flows	should	be	used	to	replenish	NSC	at	the	expense	of	growth	until	a	minimum	NSC	pool	
size	(30%–60%	of	the	seasonal	maximum,	Martínez‐Vilalta	et	al.,	2016)	is	reached	(‘active’	storage:	Sala,	Woodruff,	&	Meinzer,	2012),	
thus	maintaining	a	safety	margin	against	the	risk	of	carbon	starvation	(Huang	et	al.,	2019;	Wiley	&	Helliker,	2012).	Note	that	this	as‐
sumption	departs	from	the	notion	that	NSC	is	a	mere	reservoir	for	excess	supply	of	carbon	relative	to	growth	demand	(‘passive’	storage:	
Kozlowski,	1992).	In	the	model,	carbon	allocation	to	all	tree	structural	and	nonstructural	pools	is	computed	here	daily	and	is	controlled	
by	functional	constraints	due	to	direct	and	lagged	C‐requirements	(Huang	et	al.,	2019;	Merganičová	et	al.,	2019).	It	is	assumed	that	a	
minimum	NSC	threshold	level	concentration	(11%	of	sapwood	dry	mass	for	deciduous	and	5%	for	evergreen	species:	Genet,	Bréda,	&	
Dufrêne,	 2010)	 has	 to	 be	maintained	 for	multiple	 functions	 including	 osmoregulation,	 cell	 turgor,	 vascular	 integrity,	 tree	 survival	 
(reviewed	in	Hartmann	&	Trumbore,	2016)	and	organ‐specific	phenology	(leaf	and	fine‐root	formation).	The	greater	the	sapwood	mass,	
the	greater	the	minimum	NSC	threshold	must	be	(Dietze	et	al.,	2014).	For	deciduous	trees,	four	phenological	phases	are	distinguished:	
(a)	the	dormant	phase,	where	R	is	fuelled	by	NSC‐consumption;	(b)	the	leaf	onset	phase,	when	leaf	and	fine	root	production	consume	
NSC	(unless	the	carbon	balance	is	positive,	in	which	case	new	assimilates	are	used)	until	the	predicted	maximum	annual	leaf	area	index	
(LAI)	is	reached;	(c)	the	full	growing	phase,	when	new	assimilates	are	allocated	to	stem,	coarse	roots,	branch	and	fruits,	and	only	into	
the	NSC	pool	if	this	is	below	its	minimum	level;	(d)	the	leaf	fall	phase,	when	all	assimilates	are	allocated	to	the	NSC	reserve	pool	while	
some	(~10%)	NSC	is	relocated	from	falling	leaves	and	dying	fine	roots	(Campioli	et	al.,	2013;	Collalti	et	al.,	2016).	For	evergreen	species	
the	model	follows	a	simpler	schedule	consisting	of	a	first	maximum	growth	phase,	when	the	model	allocates	NSC	to	foliage	and	fine	
roots	up	to	peak	LAI,	and	a	second	full	growing	phase,	when	the	model	allocates	to	all	of	the	pools	(Kuptz	et	al.,	2011).	Such	patterns	
of	whole‐tree	seasonal	NSC	dynamics	have	been	all	recently	confirmed	by	Furze	et	al.	 (2019)	and	Fierravanti,	Rossi,	Kneeshaw,	De	
Grandpré,	and	Deslauriers	 (2019)	and	a	similar	phenological	and	carbon	allocation	scheme	has	been	adopted	by	other	models	 (e.g.	
Arora	&	Boer,	2005;	Krinner	et	al.,	2005).
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2.2 | Simulation set‐up

The	 logic	 described	 above	 was	 implemented	 in	 a	 process‐based	
forest	growth	model	 (3D‐CMCC‐BGC),	parameterized	at	site	 level,	
and	 applied,	 as	 a	 case	 study,	 to	 an	 intensively	monitored	 temper‐
ate	deciduous	forest.	Additional	model	description	can	be	found	in	
Supporting	 Information,	 Collalti	 et	 al.	 (2014,	 2016,	 2018,	 and	 ref‐
erences	 therein),	 and	 Marconi,	 Chiti,	 Nolè,	 Valentini,	 and	 Collalti	
(2017).

Very	limited	data	are	available	on	the	turnover	rate	τ	of	live	cells	
in	sapwood,	which	is	often	either	guessed	or	inferred	by	model	cal‐
ibration	(e.g.	White,	Thornton,	Running,	&	Nemani,	2000).	We	car‐
ried	 out	 10	 simulations	with	 τ	 varied	 in	 arbitrary	 0.1	 year–1	 steps,	
from	τ = 1 year–1	 (100%	of	turnover,	all	the	previous	year	live	cells	
of	 sapwood	becomes	nonrespiring	heartwood	 in	 the	current	year)	
with	R	mostly	depending	on	the	left‐hand	side	term	of	Equation	(2)	
(R	~	gRG),	down	to	τ = 0.1 year–1	(only	10%	of	the	previous	year's	live	
cells	of	sapwood	biomass	dies)	and	R	mostly	depending	on	the	right‐
hand	side	term	of	Equation	(2)	(R	~	mRWlive).	Thus,	we	started	with	
the	largest	prior	distribution	for	τ,	assuming	that	values	outside	this	
range	are	not	functionally	possible	(Table	1).	This	approach	ensures	
that	 any	difference	 in	model	 results	 reflects	difference	 in	 specific	
model	assumptions	(respiration	controlled	by	photosynthesis	or	bio‐
mass)	rather	than	model	structure.	We	are	unaware	of	any	studies	
reporting	changes	in	τ	with	age	or	biomass;	we	have	therefore	nec‐
essarily	assumed	that	τ	is	constant	in	time.

The	standard	model	configuration	assigns	τ = 0.7 year–1	(Collalti	
et	 al.,	 2019)	 and	 this	 same	 value	 has	 been	 used	 by	 several	 au‐
thors	 in	 various	 modelling	 contexts	 (e.g.	 Bond‐Lamberty,	 Gower,	
Ahl,	 &	 Thornton,	 2005;	 Tatarinov	&	Cenciala,	 2006).	Other	mod‐
els	have	applied	different	values	 (see	Box	2).	Zaehle,	Sitch,	Smith,	
and	 Hatterman	 (2005),	 Poulter	 et	 al.	 (2010),	 and	 Pappas,	 Fatichi,	
Leuzinger,	Wolf,	and	Burlando	(2013)	found	that	τ	is	a	critical	param‐
eter	for	both	LPJ‐DGVM	and	LPJ‐GUESS.	We	are	not	aware	of	simi‐
lar	sensitivity	analyses	for	other	models.	Leaf	and	fine	root	turnover	
rates	are	assumed	here	to	be	1	year–1,	appropriately	for	deciduous	
trees	(Pietsch,	Hasenauer,	&	Thornton,	2005).	The	model	parame‐
ters	accounting	for	‘age	effects’	(e.g.	those	controlling,	among	other	
things,	 leaf	 conductance:	 Kirschbaum,	 2000;	 Smith,	 Prentice,	 &	
Sykes,	2001)	were	set	arbitrarily	large,	to	avoid	building	in	prior	as‐
sumptions.	Age‐	and	size‐effects	are	therefore	considered	synony‐
mous	(Mencuccini	et	al.,	2005).	A	stochastic	background	whole‐tree	
mortality	rate	(1%	of	trees	removed	each	year)	was	retained	and	in‐
cluded	in	Equation	(4)	to	ensure	realistic	self‐thinning	(Kirschbaum,	
2005;	Smith	et	al.,	2001).	All	other	parameters	were	left	unchanged	
from	the	standard	model	configuration.

2.3 | Test site and model run

The	model	was	 applied	 to	 simulate	150	 years	 of	 even‐aged	 stand	
development	in	a	stand	of	European	beech	(Fagus sylvatica	L.;	Sorø,	
Denmark;	Wu	 et	 al.,	 2013,	 Reyer	 et	 al.,	 2019)	 in	 daily	 time	 steps	
from	1950	to	2100.	The	reasons	for	choosing	this	stand	are:	(a)	the	

extensive	literature	on	European	beech,	allowing	key	parameter	val‐
ues	to	be	assigned	with	confidence;	(b)	the	exceptional	quantity	and	
length	of	data	available	at	the	Sorø	site	for	 initializing	 in	1950	and	
evaluating	the	model	more	than	50	years	later,	thus,	allowing	long‐
term	processes	(including	woody	biomass	accumulation)	to	emerge;	
and	(c)	because	the	trees	are	deciduous,	we	can	assume	a	complete	
annual	turnover	of	leaves	and	fine	roots	and,	therefore,	more	easily	
disentangle	 the	 contributions	 of	Wgreen and Wlive_woody.	 Deciduous	
species	are	also	expected	to	have	greater	within‐season	variability	
in Pn:P,	and	greater	asynchrony	in	carbon	supply	and	demand,	than	
evergreen	species	(Dietze	et	al.,	2014;	Martínez‐Vilalta	et	al.,	2016).	
However,	both	the	model	assumptions	and	its	results	are	based	on	

BOX 2 Turnover rates and other uncertainties in 
models

Most	vegetation	models	assume,	among	other	parameters	com‐
monly	maintained	constant,	a	fixed	rate	of	sapwood	turnover,	
τ.	However,	lack	of	information	on	this	parameter	has	been	al‐
ready	 shown	 to	be	an	 important	 source	of	uncertainty	 in	 the	
modelled	 carbon	 balance	 of	 vegetation	 stands	 (Collalti	 et	 al.,	
2019;	Goulden	et	al.,	2011;	Malhi,	2012).	Values	adopted	in	cur‐
rent	models	include:	τ = 0.7 year–1	in	CLM	(Oleson	et	al.,	2013),	
Forest	 v.5.1	 (Schwalm	 &	 Ek,	 2004),	 3D‐CMCC‐CNR	 (Collalti	 
et	al.,	2019)	and	Biome‐BGC	(Thornton	et	al.,	2002);	τ~0.75	year–1  
in	 CASTANEA	 (Dufrêne	 et	 al.,	 2005);	 τ = 0.85 year–1	 in	 LPJ‐
GUESS	(Smith	et	al.,	2001);	τ = 0.95 year–1	in	SEIB‐DGVM	(Sato,	
Itoh,	 &	 Kohyama,	 2007),	 LPJ‐DGVM	 (Sitch	 et	 al.,	 2003)	 and	
NCAR‐LSM	(Bonan,	Levis,	Sitch,	Vertenstein,	&	Oleson,	2003);	
and τ~1	year–1	in	CARAIB	(Warnant,	François,	Strivay,	&	Gérard,	
1994),	PnET	(Wythers,	Reich,	&	Bradford,	2013)	and	ORCHIDEE	
(Krinner	et	al.,	2005).

Additional	sources	of	uncertainty	include	the	lack	of	con‐
sideration	of	a	size‐	or	age‐related	decline	in	the	ratio	of	liv‐
ing	to	dead	cells	(suggesting	a	declining	τ)	(Ceschia,	Damesin,	
Lebaube,	Pontailler,	&	Dufrêne,	2002;	Damesin,	Ceschia,	 Le	
Goff,	 Ottorini,	 &	 Dufrêne,	 2002),	 the	 effect	 of	 changes	 in	
climate	 (which	 could	 temporarily	 increase	 τ	 to	 reduce	main‐
tenance	 costs	 in	 favour	 of	 growth:	 Doughty	 et	 al.,	 2015),	
changes	 in	 tissue	 N	 and	 NSC	 concentrations	 (Machado	 &	
Reich,	2006;	Thurner	et	al.,	2017)	and,	a	probable,	genetically	
controlled	down‐regulation	of	basal	respiration	rates	with	the	
ageing	of	cells	 (Carey,	Sala,	Keane,	&	Callaway,	2001;	Wiley,	
Hoch,	&	Landhäusser,	2017).	Moreover,	both	τ	and	basal	respi‐
ration	rates	(gR and mR)	are	likely	to	vary	among	different	tree	
biomass	pools	(Reich	et	al.,	2008).	Respiratory	carbon	losses	
per	unit	plant	mass	may	also	change	to	sustain	growth	as	an	
acclimatory	 response	 to	 carbon	 demand	 due	 to	 increasing	
plant	size,	and	perhaps	with	changing	climate	 (Smith	&	Stitt,	
2007).	These	hypotheses	are	all	grounded	in	theory,	but	are	
supported	by	 very	 limited	observations	 (Friend	 et	 al.,	 2014;	
Thurner	et	al.,	2017).
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general	principles	and	expected	to	apply	more	generally	than	solely	
to	this	specific	model	and	site.

We	 simulated	 forest	 development	 up	 to	 2100,	 consistent	with	
the	common	economic	 rotation	 length	 for	 this	 species	 in	northern	
Europe.	After	canopy	closure,	modelled	LAI	and	the	relative	amounts	
of	 leaf	 and	 fine‐root	 biomass	 became	 stable	 or	 even	 decreased	
slightly,	as	is	usually	observed	(Yang,	He,	Aubrey,	Zhuang,	&	Teskey,	
2016;	Yang,	Luo,	&	Finzi,	2011).	Therefore,	changes	in	modeled	R,	and	
its	components	RM and RG,	could	be	attributed	to	changes	in	the	total	
amount	of	living	woody	biomass	and	the	costs	of	its	maintenance.

In	1950,	the	stand	was	aged	30	years	with	an	average	tree	diam‐
eter	at	breast	height	of	~6	cm	and	a	density	of	1,326	trees/ha.	Model	
state	variables	were	initialized	using	species‐specific	functional	and	
allometric	relationships	from	the	literature,	and	previous	model	ap‐
plications	at	this	site	(Collalti	et	al.,	2016,	2018;	Marconi	et	al.,	2017).	
Model	sensitivity	 to	parameter	values	and	their	uncertainties	have	
been	assessed	in	depth	in	a	previous	work	(see	Collalti	et	al.,	2019,	
especially	 their	 figure	2	 and	 table	3).	Management,	 in	 the	 form	of	
thinning,	occurred	at	the	site	only	up	to	2014.	After	that	year,	only	
stochastic	mortality	was	accounted	for	in	the	model.	Live	wood	was	
initialized	at	15%	of	sapwood	biomass	(as	the	fraction	of	current	year	
sapwood:	Pietsch	et	al.,	2005)	and	assigned	a	C:N	ratio	of	48	g	C/g	N,	
not	changing	with	increasing	biomass	(Ceschia	et	al.,	2002;	Damesin,	
2003).	The	minimum	concentration	of	NSC	was	assumed	to	be	~11%	
of	sapwood	dry	mass	 (Genet	et	al.,	2010;	Hoch,	Richter,	&	Kӧrner,	
2003;	Martínez‐Vilalta	 et	 al.,	 2016)	 consistent	with	measurements	

on	deciduous	species	(and	specifically	beech).	Daily	meteorological	
forcing	variables	were	obtained	as	historical	ensemble	means	from	
five	Earth	System	Models	up	to	2005	provided	by	the	Inter‐Sectoral	
Impact	Model	 Intercomparison	Project	 (ISI‐MIP;	Warszawski	et	al.,	
2014).	Data	for	the	period	1995–2005	were	then	randomly	repeated	
up	to	2100.	Additional	simplifying	assumptions	were	made	in	order	
to	focus	specifically	on	the	effects	of	increases	in	tree	size,	as	follows:	
no	disturbances	(whether	herbivory	or	management)	after	2014;	no	
effect	of	changes	 in	 soil	N	availability,	 thus	excluding	confounding	
effects	of	altered	N	deposition;	and,	 importantly,	 to	avoid	possible	
confounding	of	 temperature	effects	on	RM	with	other	warming	ef‐
fects,	a	stable	(1995–2005)	climate	and	atmospheric	CO2	concentra‐
tion	(~380 μmol/mol).	Exports	of	carbon	to	exudates	and	BVOCs	are	
very	slight	in	this	species,	and	they	could	therefore	be	neglected.

3  | RESULTS

3.1 | Data‐model agreement

The	 standard	model	 configuration	 satisfactorily	 reproduced	P,	R,	Pn 
and	the	ratio	Pn:P	when	compared	to	independent,	site‐level,	carbon	
balance	data	 (Wu	et	 al.,	 2013)	 for	 the	period	2006–2010	 (Figure	2;	
Table	2),	corresponding	to	a	stand	age	of	~85–90	years.	P	was	in	agree‐
ment	with	eddy	covariance	data,	while	R	was	slightly	underestimated	
compared	 to	 values	 in	Wu	et	 al.	 Consequently,	 the	model	 overesti‐
mated	the	average	Pn:P	ratio	by	14%	compared	to	Wu	et	al.	However,	

F I G U R E  2  Model	results	for	(a)	Pn:P 
ratio	(dimensionless),	(b)	net	primary	
production	(Pn,	g	C	m

−2 year−1)	and	(c)	
autotrophic	respiration	(R,	g	C	m−2 year−1)	
performed	with	varying	τ	(coloured	lines).	
The	beginning	of	simulations	correspond	
to	1950	(stand	age	30	years);	the	end	of	
simulations	correspond	to	2100	(stand	
age	180	years).	The	dark‐pointed	red	
line	can	be	considered	as	a	mechanistic	
representation	of	W98's	fixed	Pn:P	ratio	
(τ = 1 year–1),	while	the	dark	pink	line	
approximates	R06's	scaling	relationship	
between	R	and	biomass	(τ = 0.1 year–1).	
Orange	dotted	lines	represent	Amthor's	
(2000)	(A00)	‘allowable’	range	for	the	
Pn:P	ratio	(0.65–0.2).	The	red	dots	give	
the	average	measured	values	(Wu	et	
al.,	2013)	at	the	site	for	(a)	Pn:P	ratio,	(b)	
Pn	and	(c)	R.	Vertical	bars	represent	the	
standard	deviation	with	horizontal	bars	
representing	the	period	2006–2010	
(stand	age~85–90	years).	The	shaded	
area	represents	the	overall	uncertainty	
of	model	results	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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Wu	 et	 al.	 argued	 that	 the	 values	 of	 R	 they	 obtained	 (by	 subtract‐
ing	 modelled	 heterotrophic	 from	 measured	 ecosystem	 respiration)	
may	 have	 been	 overestimated,	 given	 also	 the	 large	 standard	 devia‐
tion	 (±143	g	C	m−2 year−1).	The	model	 results	are	otherwise	 in	good	
agreement	with	Wu	et	al.	for	woody	carbon	stocks	(both	above‐	and	
below‐ground),	annual	wood	production	(the	sum	of	carbon	allocated	
to	stems,	branches	and	coarse	roots),	and	annual	above‐	and	below‐
ground	 litter	production	 (the	 sum	of	 carbon	allocated	 to	 leaves	and	
fine	roots;	Table	2).	Modelled	respiration	of	the	woody	compartments,	
leaf	 and	 total	 (above‐	 and	below‐ground)	 respiration,	 and	NSC	pool	
and	fluxes,	are	all	compatible	with	values	reported	by	previous	inves‐
tigations,	 and	within	 the	 ranges	 of	 total,	wood	 and	 leaf	 respiration,	
and Pn:P	ratios	reported	for	European	beech	(e.g.	Barbaroux	&	Brèda,	
2002;	Barbaroux,	Brèda,	&	Dufrêne,	2002;	Davi,	Barbaroux,	Francois,	
&	Dufrêne,	2009;	Genet	et	al.,	2010;	Granier,	Breda,	Longdoz,	Gross,	&	

Ngao,	2008;	Guidolotti,	Rey,	D'Andrea,	Matteucci,	&	De	Angelis,	2013;	
Knohl,	Schulze,	Kolle,	&	Buchmann,	2003).	A	model	validation	forced	
by	actual	measured	climate	at	this	site	is	also	described	in	previous	pa‐
pers	(Collalti	et	al.,	2016,	2018;	Marconi	et	al.,	2017).

3.2 | The effect of varying τ

The	 simulations	 produced	 a	 spectrum	 of	 diverging	 trajectories,	
ranging	 from	 an	 approximately	 steady‐state	 with	 constant	 Pn:P 
ratio	(for	large	τ)	to	a	constantly	decreasing	Pn:P	ratio	(for	small	τ; 
Figure	1a).	For	τ = 1 year−1,	Pn:P	stays	close	to	0.5.	For	τ	≤	0.2	year−1,	
Pn:P	eventually	falls	below	the	 lower	 limit	of	commonly	observed	
values	 (0.22;	Collalti	&	Prentice,	2019)	and	the	physiological	 limit	
of	0.2	proposed	by	Amthor	(2000).	Figure	2	also	shows	the	effects	
of	varying	τ	in	determining	different	trajectories	for	Pn	(Figure	2b)	

TA B L E  2  Model	validation	(averages	for	the	years	2006–2010),	in	brackets	standard	deviation	(when	available).	Literature	data	come	
from	Wu	et	al.	(2013)

2006–2010 
mean (±SD) Pn:P P R Pn Pnwoody Pnlitter

Above‐
ground‐R

Below‐
ground‐R

Above‐
ground 
woody 
stocks

Below‐
ground 
woody 
stocks

Total 
woody 
stocks

Units Unitless g	C	m−2 year−1 g	C/m2

Literature 0.37 1,881	
(±127)

1,173	
(±143)

708 
(±65)

307  
(±57)

401 872 301 9,885	
(±279)

1,848	
(±160)

11,733	
(±281)

Modelled 0.45	
(±0.02)

1,706	 
(±	52)

937 
(±30)

768 
(±60)

309  
(±56)

314	 
(±9)

635  
(±20)

302  
(±9)

8,993	
(±278)

1,954	
(±545)

10,948	
(±333)

F I G U R E  3  Regression	analyses	
between	whole‐plant	autotrophic	
respiration	(R,	g	C	m−2 year−1)	and	(a)	
whole‐plant	carbon	(W;	g	C/m2),	(b)	
carbon	in	living	pools	(Wlive_woody + Wgreen; 
g	C/m2),	(c)	whole‐plant	nitrogen	 
(W; g N/m2)	and	(d)	nitrogen	in	living	pools	
(Wlive_woody + Wgreen; g N/m2).	Different	
colours	represent	different	τ	values	as	
described	in	the	legend	panels	(with	
τ = 0.1 year–1,	n	=	117;	with	τ = 0.2 year–1,	
n	=	149;	otherwise	n	=	150)	[Colour	figure	
can	be	viewed	at	wileyonlinelibrary.com]
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and R	(Figure	2c)	and	consequent	differences	in	the	partitioning	be‐
tween	RM and RG	(Figure	S2).	Modelled	R,	at	the	end	of	simulations,	
ranging	from	~800	g	C	m−2 year−1,	giving	Pn~900	g	C	m

−2 year−1 and 
P~1,700	g	C	m−2 year−1	(Figure	S1	and	for	NSC	flux	Figure	S3b)	con‐
sistent	with	 a	 steady‐state	 between	R or Pn and P,	 to	 two	 cases	
(τ	=	0.1,	0.2	year−1)	in	which	trees	die	from	starvation.

The	model	did	not	generate	any	consistent	power–law	relation‐
ship	between	R	and	biomass	either	for	b~1	(i.e.	R06),	or	for	~3/4	
(Mori	et	al.,	2010),	or	for	~2/3	(Makarieva,	Gorshkov,	&	Li,	2005)	
or	for	~3/5	(Michaletz	et	al.,	2014;	Table	S1).	The	simulations	indi‐
cated	b~1	initially,	shifting	with	increasing	tree	size	to	b~0.74	for	
τ = 0.1 year−1	(R2 = .99; n	=	117)	or	0.19	for	τ = 1 year−1	(R2	=	.84;	
n	 =	150;	 ‘n’	 corresponds	 to	 years	of	 simulation).	 For	 the	 relation	
between	R	and	whole‐plant	N,	again	the	simulations	indicated	b~1	
initially,	shifting	to	b~0.82	for	τ = 0.1 year−1	(R2 = .99; n	=	117)	or	
0.27	for	τ = 1 year−1	(R2 = .82; n	=	150;	Figure	3a,c).	The	highest	b 
values	corresponded	to	simulations	which	ended	because	the	trees	
died.

4  | DISCUSSION

4.1 | R is not entirely determined by P

A	constant	Pn:P	ratio,	as	implied	by	W98's	hypothesis	and	obtained	
here	by	setting	τ = 1 year−1,	conflicts	with	observations	from	many	
different	 tree	 species	 that	 show	 a	 substantially	 slower	 turnover	
rate	of	living	cells.	In	fact,	parenchyma	cells	within	secondary	xylem	
are	very	often	more	than	a	year	old,	and	can	be	up	to	200	years	old	
(Spicer	&	Holbrook,	2007).	The	constant	 ratio	hypothesis	 is	 also	
contrary	to	the	evidence	in	trees	that	much	of	the	recently	fixed	
assimilate	pool	is	at	first	stored	as	reserves,	and	only	later	used	for	
metabolism	or	growth	(Schiestl‐Aalto,	Kulmala,	Nikinmaa,	&	Mäkelä,	
2015;	Schiestl‐Aalto	et	al.,	2019).	Indeed,	there	are	some	reports	
of	 decoupling	 between	 growth	 (which	 would	 imply	 some	 CO2 
released	for	both	RG	and	subsequently	RM)	and	photosynthesis— 
with	growth	ceasing	 long	before	photosynthesis—because	of	the	
different	 sensitivities	 of	 growth	 and	 photosynthesis	 to	 environ‐
mental	drivers.	Kagawa,	Sugimoto,	and	Maximov	(2006a)	reported	
for	Larix gmelinii	Mayr.	 that	up	 to	43%,	and	according	 to	Gough,	
Flower,	 Vogel,	 Dragoni,	 and	 Curtis	 (2009)	 up	 to	 66%,	 of	 annual	
photosynthetates	in	bigtooth	aspen	(Populus grandidentata	Michx.)	
and	northern	red	oak	(Quercus rubra	L.)	are	used	during	the	year(s)	
after	 they	have	been	 fixed.	Gaudinski	et	al.	 (2009),	Malhi	 (2012)	
and	 Delpierre,	 Berveiller,	 Granda,	 and	 Dufrêne	 (2016)	 all	 found	
negative	correlations	between	annual	carbon	inflows	and	above‐	
or	 below‐ground	wood	 growth,	 from	 temperate	 to	 tropical	 tree	
species.	Analysing	Luyssaert	et	al.'s	(2007)	global	database,	Chen,	
Chen,	Yang,	and	Robinson	(2013)	found	that	R	does	not	scale	iso‐
metrically	with	P.	Some	authors	have	suggested	that	RG could be 
supplied	exclusively	by	recent	photosynthates	while	RM	by	previ‐
ously	stored	ones	(Lotscher,	Klumpp,	&	Schnyder,	2004).	Along	the	
same	lines,	Maier,	Johnsen,	Clinton	and	Ludovici	(2010)	for	loblolly	
pine	trees	(Pinus taeda	L.),	Kuptz	et	al.	(2011)	for	beech	(F. sylvatica 

L.)	 and	Norway	 spruce	 (Picea abies	Karst.)	 and	Lynch,	Matamala,	
Iversen,	Norby,	and	Gonzalez‐Meler	(2013)	for	a	sweetgum	plan‐
tation	 (Liquidambar styraciflua	 L.)	 found	 that	both	RG and RM are 
not	completely	satisfied	by	recent	assimilates,	and	that	some	cur‐
rent	RM	can	be	derived	from	woody	tissues	constructed	in	previ‐
ous	 years.	 Litton,	Raich,	 and	Ryan	 (2007)	 and	Yang	et	 al.	 (2016)	
both	 found	 low	correlations	between	 respiration	and	 the	annual	
production	of	woody	compounds	in	large	data	sets.	Many	studies	
have	also	reported	little	variation	in	the	CO2	efflux	from	sapwood	
in	 relation	 to	 tree‐ring	 age,	 despite	 a	 stepwise	 decrease	 in	 the	
fraction	of	living	cells	towards	the	centre	of	the	stems	(e.g.	Ceschia	 
et	al.,	2002;	Pallardy,	2010;	Spicer	&	Holbrook,	2007).	These	vari‐
ous	observations	imply	that	some	carbon	is	fixed	1	year	and	used	
for	 the	 tree's	own	growth	and	metabolism	 in	 the	next	or	 subse‐
quent	years,	and	that	the	inner	sapwood	contains	a	population	of	
living	cells	formed	in	previous	years.

These	observations	are	all	 incompatible	with	the	hypothesis	of	a	
tight	coupling	of	R and P	(alone),	and	with	model	results	obtained	by	as‐
suming	complete	turnover	of	live	cells	in	sapwood	during	a	single	year.

4.2 | R is not entirely determined by biomass

On	 the	 other	 side	 of	 the	 ledger,	model	 simulations	 indicate	 that	
low τ	values	 (≤0.2	year−1)	can	 lead	to	excessively	high	respiration	
burdens,	 impossibly	 low	 Pn:P	 ratios	 (<0.2)	 and	 ultimately	 carbon	
starvation	when	all	NSC	is	consumed	and	whole‐tree	RM	or	growth	
can	no	 longer	be	 sustained	 (Figure	2).	 This	model	 result	 is	 quan‐
titatively	dependent	on	the	values	adopted	for	C:N	ratio	and	the	
minimum	NSC‐pool	which	 increases	with	 tree	 size,	 but	 it	 is	 con‐
sistent	with	 the	 idea	 that	Pn:P	 ratios	≤0.2	 are	not	physiologically	
sustainable	 (Amthor,	 2000).	 Amthor	 described,	 for	 a	 large	 data	
set	comprising	grasses,	tree	crops	and	forest	trees	worldwide,	the	
0.65–0.2	 bounds	 as	 reflecting	 maximum	 growth	 with	 minimum	
maintenance	expenditure	 (0.65)	 and	minimum	growth	with	maxi‐
mum	 physiologically	 sustainable	maintenance	 costs	 (0.2).	 Such	 a	
minimum Pn:P	value	agrees	also	with	Keith	et	al.'s	 (2010)	 reason‐
ing	 (analysing	 Eucalyptus	 forests	 of	 south‐eastern	 Australia)	 that	
trees	always	require	some	annual	biomass	production	 in	order	to	
survive.	With	 such	 low	 τ,	 simulated	woody	RM:R	 exceeds	 90%,	 a	
value	much	higher	than	those	(56%–65%)	reported	by	Amthor	and	
Baldocchi	 (2001;	Figure	S2).	This	situation	initiates	a	spiral	of	de‐
cline,	whereby	neither	P	nor	NSC	drawdown	are	sufficient	to	avoid	
a	 long‐term	 carbon	 imbalance	 (Figure	 S3a,b;	Weber	 et	 al.,	 2018;	
Wiley	et	al.,	2017).

Slightly	higher	τ	values	(from	0.3	to	0.5	year−1)	were	found	to	limit	
woody	biomass	increase	because	of	high	NSC	demand,	leading	to	a	
shift	in	the	allocation	of	assimilates	to	refill	NSC	at	the	expense	of	
growth,	and	Pn:P	values	close	to	0.2	(Figure	2a).	Values	of	τ > 0.5 did 
not	show	such	behaviour	and	allowed	structural	and	nonstructural	
compounds	 to	 accumulate	 in	 parallel,	 while	 Pn gradually declined 
and	eventually	levelled‐off.	This	scenario	allows	structural	biomass	
accumulation	to	continue	even	in	older	trees,	as	has	been	observed	
(Stephenson	et	al.,	2014).
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4.3 | Scaling relationships

We	simulated	forest	dynamics	from	juvenile	up	to	very	 large,	mature	
trees	while	R06's	 results	 supporting	 isometric	 scaling	were	based	on	
measurements	of	seedlings	and	6‐	to	25‐year‐old	trees	with,	presum‐
ably,	very	little	heartwood.	Some	other	studies	have	suggested	that	the	
scaling	slope	of	approximately	1	for	whole‐plant	mass	may	be	valid	early	
in	stand	development,	but	that	the	exponent	may	eventually	become	
smaller	than	3/4,	a	phenomenon	that	has	been	termed	‘ontogenic	drift’	
(Makarieva	et	al.,	2008).	Piao	et	al.	(2010)	in	a	global	analysis	also	found	
a	low	correlation,	and	a	low	scaling	exponent,	between	R	and	whole‐
plant	biomass	(b	=	0.21,	corresponding	to	τ~0.9	in	our	simulations).	Piao	
et	al.	(2010)	argued	that,	for	large	mature	trees,	an	increasing	fraction	
of	woody	C	and	N	biomass	is	composed	of	metabolically	inactive	heart‐
wood,	and	concluded	that	a	linear	relationship	between	respiration	and	
whole‐plant	biomass	should	not	be	expected	(even	if	there	is	a	linear	re‐
lationship	of	respiration	to	the	live	component	of	woody	biomass),	while	
a	curvilinear	relationship	at	the	small	end	of	the	size‐spectrum	seemed	
more	appropriate	 (Kozłowski	&	Konarzewski,	2005).	Li,	Han,	and	Wu	
(2005)	also	found	no	evidence	for	an	isometric	or	3/4	power	scaling	re‐
lationship,	indicating	instead	a	range	between	1.14	and	0.40,	decreasing	
with	plant	size.	The	only	approximately	isometric	relationship	we	found	
in	our	simulations—across	all	τ	used—was	between	R	and	the	living	com‐
ponents	of	biomass	C	(b	in	the	range	of	0.8–1,	with	R2	always	>.93)	and	
biomass	N	(b~0.9,	with	R2	always	>.97;	Figure	3b,d;	Gruber,	Wieser,	&	
Oberhuber,	2009;	Kerkhoff	&	Enquist,	2005;	Makarieva	et	al.,	2005).	
Conversely,	and	in	accordance	with	Piao	et	al.	(2010),	by	considering	all	
woody	biomass	(sapwood	and	heartwood),	b	consistently	deviates	from	
linearity	for	both	C	and	N	in	biomass,	because—as	observed	in	mature	
and	big	trees—an	increasing	amount	of	biomass	is	composed	of	meta‐
bolically	inactive	tissues	that	do	not	respire.

None	of	these	findings	are	compatible	with	a	tight	isometric	re‐
lationship	of	R	to	whole‐plant	C	(or	N)	biomass	as	proposed	by	R06.

4.4 | R is determined by P, biomass and the demand 
for reserves

Plants	store	 large	amounts	of	NSC	 (potentially	enough	 to	 rebuild	 the	
whole	leaf	canopy	one	to	more	than	four	times:	Hoch	et	al.,	2003)	and,	
when	 needed,	 plants	 can	 actively	 buffer	 the	 asynchronies	 between	
carbon	demand	(i.e.	R and G)	and	supply	(i.e.	P)	by	tapping	the	pool	of	
nonstructural	 carbon	 (see	Figure	S3	 for	NSC	 trends).	 Several	 lines	of	
evidence	and	a	growing	body	of	literature	support	the	view	of	an	active	
sink	of	NSC.	That	is,	NSC	competes	with	growth,	while	it	controls	R	(and	
including	 other	 nonmetabolic	 functions,	 see	 Hartmann	 &	 Trumbore,	
2016),	in	a	compensatory	mechanism	(high	NSC	demands	for	respiration	
means	 low	carbon	supply	for	biomass	growth	and	vice	versa).	Schuur	
and	Trumbore	(2006)	and	Carbone,	Czimizik,	McDufee,	and	Trumbore	
(2007)	for	boreal	black	spruce	forest	(Picea mariana	B.	S.	P),	and	Lynch	
et	al.	(2013)	for	a	L. styraciflua	plantation,	all	reported	that	plant‐respired	
CO2	 is	a	mixture	of	old	and	new	assimilated	carbohydrates.	Likewise,	
Vargas,	 Trumbore,	 and	 Allen	 (2009)	 for	 semideciduous	 tree	 species,	
Carbone	 et	 al.	 (2013),	 Richardson	 et	 al.	 (2015)	 and	 Richardson	 et	 al.	

(2013)	for	red	maple	trees	(Acer rubrum	L.),	Muhr	et	al.	(2013,	2016)	for	
different	Amazonian	tree	species	and	Solly	et	al.	(2018)	for	pines	(Pinus 
sylvestris	L.),	beeches	(F. sylvatica	L.),	spruces	(P. abies	Karst)	and	birches	
(Betula nana	L.),	all	found	that	old	NSC	(up	to	17	years	old)	remobilized	
from	parenchyma	cells	can	be	used	for	growth	or	metabolism.

Aubrey	and	Teskey	(2018)	found	that	carbon‐starved	roots	and	
whole‐tree	saplings	die	before	complete	NSC	depletion	 in	 longleaf	
pine	 (Pinus palustris	 L.),	 but	 the	 threshold	NSC	 level	 at	 which	 this	
happens	 remains	unknown	 for	most	 species.	 These	 thresholds	 are	
likely	 to	 vary	 among	 tissues	 (Weber	 et	 al.,	 2018),	 species	 (Hoch	 
et	 al.,	 2003),	 phenotypes,	 habit	 and	wood	 anatomy	 (Dietze	 et	 al.,	
2014),	 and	 increase	with	 tree	 size	 (Sala	 et	 al.,	 2012).	Others	 have	
reported	that	aspen	trees	 (Populus tremuloides	Michx)	cannot	draw	
down	NSC	to	zero	because	of	limitations	in	carbohydrate	remobiliza‐
tion	and/or	transport	(Wiley	et	al.,	2017).	A	minimum	NSC	level,	which	
has	been	found	to	proportionally	increase	with	biomass,	may	also	be	
required	to	maintain	a	safety	margin	and	a	proper	internal	function‐
ing	of	trees	(including	osmoregulation),	regardless	of	whether	growth	
is	 limited	 by	 carbon	 supply	 (Huang	 et	 al.,	 2019;	 Martínez‐Vilalta	 
et	al.,	2016;	Sala,	Fouts,	&	Hoch,	2011;	Sala	et	al.,	2012;	Woodruff	&	
Meinzer,	2011).	Genet	et	al.	(2010)	found	for	beech	and	sessile	oak	
(Quercus petraea	[Matt.]	Liebl.)	shifts	during	ontogeny	in	carbon	allo‐
cation	from	biomass	growth	to	reserves	regardless	of	seasonal	fluc‐
tuations,	habitat	and	climate.	Palacio,	Hernández,	Maestro‐Martínez,	
and	Camarero	(2012)	found	that	black	pine	trees	(Pinus nigra	Arnold)	
that	were	repeatedly	defoliated	for	11	years,	and	left	to	recover	for	
another	6	years,	showed	reduced	growth	but	similar	stem	NSC	con‐
centration	when	compared	to	control	trees.	Fierravanti	et	al.	(2019)	
found	 that	 low	NSC	accumulation	 in	 conifers	defoliated	by	 spruce	
budworm	led	to	a	reduction	in	growth	and	an	increase	in	mortality.

It	has	further	been	suggested	that	a	considerable	fraction	of	NSC	
(mostly	starch)	in	the	inner	part	of	wood	may	become	compartmen‐
talized	and	sequestered	away	from	sites	of	phloem	loading,	and	thus	
is	no	 longer	accessible	for	either	tissue	growth	or	respiration	(Sala	 
et	 al.,	 2012).	 Root	 exudation	 to	 mycorrhizal	 fungi	 and	 secondary	 
metabolites	 (not	 accounted	 for	 here)	 could	 also	 accelerate	 NSC	 
depletion	 (Pringle,	 2016),	 and	 potentially	 create	 a	 risk	 of	 carbon	 
starvation	even	for	values	of	τ well above 0.2.

Overall,	asynchrony	between	(photosynthetic)	source	and	(utiliza‐
tion)	sink	implies	some	degree	of	uncoupling	of	R,	and	consequently	Pn 
(and	growth),	from	P	and	biomass.	Carbon	demand	for	metabolism	and	
growth	can	be	mediated	by	tapping	the	pool	of	NSC	but	only	to	the	
extent	and	to	the	amount	that	it	is	accessible	and	useable	by	plants.	
Therefore,	if	this	active	role	of	NSC	can	be	experimentally	confirmed,	
it	will	imply	that	plants	prioritize	carbon	allocation	to	NSC	over	growth.

4.5 | Implications

It	has	been	suggested	that	the	observed	decline	of	Pn	during	stand	de‐
velopment	cannot	be	exclusively	caused	by	increasing	respiration	costs	
with	tree	size	(Tang,	Luyssaert,	Richardson,	Kutsch,	&	Janssens,	2014).	
The	idea,	implicit	in	the	growth	and	maintenance	respiration	paradigm—
that	 the	maintenance	of	existing	biomass	 (RM)	 is	a	 ‘tax’	 that	must	be	
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paid	first	and	which	ultimately	controls	growth—has	also	been	criticized	
for	lack	of	empirical	support	(Gifford,	2003).	While	this	paradigm	has	
some	weaknesses	(Thornley,	2011),	and	has	not	changed	much	over	the	
last	50	years	despite	some	theoretical	and	experimental	 refinements	
(e.g.	accounting	for	temperature	acclimation:	Tjoelker	et	al.,	1999),	it	re‐
flects	the	prevailing	assumption	embedded	in	models	because,	so	far,	
no	other	general	(and	similarly	promising)	mechanistic	approach	to	the	
modelling	of	whole‐plant	respiration	has	been	proposed.

Although	plant	physiologists	are	well	aware	that	 respiration	 is	
actually	neither	entirely	determined	by	photosynthesis	nor	entirely	
determined	by	biomass,	but	rather	by	plants'	energy	requirements	
for	their	functioning	and	growth,	we	highlight	the	persistent	large	
uncertainty	surrounding	this	issue	in	the	forestry	and	forest	ecology	
literature.	Both	the	literature	reviewed	here	and	our	model	results	
show	that	any	successful	modelling	approach	for	plant	respiration	
must	 necessarily	 allow	 plants	 to	 steer	 a	 middle	 course	 between	
tight	coupling	to	photosynthesis	(inconsistent	with	a	carbon	steady‐
state	in	forest	development,	and	with	many	observations)	and	de‐
pendence	on	ever‐increasing	biomass	(risking	carbon	starvation	and	
death),	coupled	to	the	buffering	capacity	of	reserves	during	carbon	
imbalances	(see	Box	1).	It	seems	likely	that	plants	strive	to	keep	an	
appropriate	quantity	of	living	cells	that	can	effectively	be	sustained	
by	 photosynthesis	 or,	 when	 necessary,	 by	 drawing	 on	 NSC	 and	
down‐regulating	allocation	to	nonphotosynthetic,	but	metabolically	
active,	tissues	as	to	minimize	maintenance	costs	(Makarieva	et	al.,	
2008).	This	would	suggest	active	control	on	carbon	use	efficiency	
and	 on	 the	 turnover	 of	 the	 living	 cells	 by	 plants.	 Yet,	 despite	 its	
importance,	NSC	use	is	overlooked	in	‘state‐of‐the‐art’	vegetation	
models.	The	present	study	has	not	been	able	to	provide	tight	nu‐
merical	constrains	on	τ.	However,	we	can	unequivocally	reject	the	
two,	mutually	incompatible	simplifying	hypotheses	as	both	conflict	
with	a	large	and	diverse	body	of	evidence.

Other	 processes,	 including	 hydraulic	 and	 nutrient	 limitations,	
may	be	in	play	(Carey	et	al.,	2001;	Xu	et	al.,	2012).	Malhi	et	al.	(2015)	
argued	for	a	link	between	high	whole‐plant	mortality	rates	and	high	
forest	productivity	as	ecophysiological	strategies	that	favour	rapid	
growth	may	 also	 result	 in	 fast	 turnover	of	 trees.	However,	 Spicer	
and	Holbrook	(2007)	noted	that	metabolic	activity	does	not	decline	
with	cell	age;	and	Mencuccini	et	al.	(2005)	noted	that	effects	of	age	
per	se	(including	cellular	senescence	and	apoptosis)	are	likely	not	re‐
sponsible	for	declining	P,	but	are	linked	to	the	functional	and	struc‐
tural	 consequences	 of	 increasing	 plant	 size.	 This	 is	 an	 important	
conclusion	because	 it	allows	models	to	avoid	accounting	explicitly	
for	age.

In	conclusion,	 to	 reduce	the	 large	uncertainty	surrounding	 this	
issue,	 it	will	be	necessary	on	the	one	hand	to	use	models	 that	ex‐
plicitly	account	for	the	turnover	of	biomass	and	the	reserves	usage;	
and	on	the	other	hand,	to	carry	out	experimental	and	field	measure‐
ments	of	the	dynamics	of	living	cells	in	wood	and	the	availability	of	
and	demand	for	labile	carbon	stores.	These	processes	have	a	direct	
bearing	on	 the	 stocks	and	 fluxes	 that	drive	 the	carbon	balance	of	
forests.
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