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A B S T R A C T   

Forest management practices might act as nature-based methods to remove CO2 from the atmosphere and slow 
anthropogenic climate change and thus support an EU forest-based climate change mitigation strategy. However, 
the extent to which diversified management actions could lead to quantitatively important changes in carbon 
sequestration and stocking capacity at the tree level remains to be thoroughly assessed. To that end, we used a 
state-of-the-science bio-geochemically based forest growth model to simulate effects of multiple forest man
agement scenarios on net primary productivity (NPP) and potential carbon woody stocks (pCWS) under twenty 
scenarios of climate change in a suite of observed and virtual forest stands in temperate and boreal European 
forests. Previous modelling experiments indicated that the capacity of forests to assimilate and store atmospheric 
CO2 in woody biomass is already being attained under business-as-usual forest management practices across a 
range of climate change scenarios. Nevertheless, we find that on the long-term, with increasing atmospheric CO2 
concentration and warming, managed forests show both higher productivity capacity and a larger potential pool 
size of stored carbon than unmanaged forests as long as thinning and tree harvesting are of moderate intensity.   

1. Introduction 

Forest ecosystems have the capacity to slow anthropogenic climate 
change by reducing the rate of atmospheric carbon dioxide (CO2) in
crease through increased photosynthetic CO2 assimilation, tree growth, 
and carbon storage in plants and soil, including growth of wood that is 
harvested and converted into products such as paper and timber (Pugh 
et al., 2019; Friedlingstein et al., 2020). Reducing net CO2 emissions is 
the central priority for achieving climatic stability in Europe by the 
target date of 2050 (European Green Deal). A key research question is 
whether current or future forest management practices can provide a 
concrete, cost-effective toolset for enhanced carbon storage at the 
ecosystem and landscape scales (Kauppi et al., 2001; Pussinen et al., 

2002; Nolè et al., 2015; Tong et al., 2020) as well as greater wood 
harvesting for material substitution purposes (Leskinen et al., 2018; 
Howard et al., 2021). 

European (EU) forests have been shaped by centuries of human ac
tivities that affect their present potential for carbon storage (Nabuurs 
et al., 2008). In the EU today, circa 165 Mha of forests are managed in 
ways that drive a net uptake of about 286 Mt CO2 year–1 (Grassi et al., 
2017, 2021). Past management strategies were designed to maximize 
yield of wood products (Leslie, 1966) rather than total biomass pro
duction or carbon storage (Tahvonen, 2016). Recent EU-level policies 
are directed toward sustainable and climate-resilient forests (FAO and 
PlanBleu, 2018; European Commission 2015; FOREST EUROPE, & FAO, 
U 2020) to secure ecosystem services (including carbon sequestration 
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for climate change mitigation) under changing climatic conditions 
(Churkina et al., 2020; Favero et al., 2020). However, substantial un
certainty remains about the effectiveness of current management prac
tices to maintain the current carbon sink under ongoing climate 
changes, and their ability to enhance carbon storage in the future, 
because classical silvicultural schemes were developed in the context of 
past environmental conditions (Bellassen et al., 2011). In addition, in 
recent decades European forests achieved increased productivity that 
exceeded harvesting rates (Ciais et al., 2008 ). These productivity in
creases resulted from the combinations of several factors: changes to 
forest age distribution, climate change (e.g. lengthening of the growing 
season; Peano et al., 2019), increased atmospheric CO2 concentration 
(stimulating photosynthesis through ‘CO2-fertilization’; Chen et al., 
2022), increased nitrogen deposition (stimulating growth through ni
trogen fertilization; Etzold et al., 2020; Chen et al., 2022) and forest 
management (Bellassen et al., 2011; Piao et al., 2020; Walker et al., 
2021). But these positive trends may not continue at rapid rates in the 
future and could be offset by increased disturbance frequency and 
severity (Seidl et al., 2017; Senf and Seidl, 2021a), raising concerns that 
recent harvesting rates may be approaching, or even exceeding, net tree 
growth rates in temperate and boreal European forests (Nabuurs et al., 
2013; Ceccherini et al., 2020; Schulze et al., 2020). Moreover, recent 
positive trends in gross primary productivity (GPP; photosynthetic 
assimilation of atmospheric CO2) and plant growth in the northern 
hemisphere might not be sustained in the future if the CO2 fertilization 
effect is not persistent (Körner, 2005; Walker et al., 2021; Wang et al., 
2021) or if they are counteracted on by increased heat stress and 
drought (Yuan et al., 2019; Grossiord et al., 2020; Wang et al., 2020), 
disturbance-related tree mortality (McDowell et al., 2020; Senf and 
Seidl, 2021b; Gampe et al., 2021; Hlásny et al., 2021), or by 
tree-age-related effects on net primary productivity (NPP; the balance of 
photosynthetic CO2 assimilation and plant respiratory CO2 release) 
(Ryan et al., 2006; Zaehle et al., 2006; Luyssaert et al., 2007; Tang et al., 
2014; Pugh et al., 2019). Hence, a reduction in the forest net carbon sink 
capacity and its transition to a CO2 source could be approaching (Duffy 
et al., 2015; Peñuelas et al., 2017; Wang et al., 2020). This might reduce 
both the potential for forests to sequester additional carbon and sus
tainably produce wood products. 

Forest carbon cycle and productivity models are used to investigate 
and project the effects of climate change and management scenarios on 
forest productivity across a range of spatial and temporal scales to 
support science-driven policymaking (Temperli et al., 2012; Vacchiano 
et al., 2012; Reyer et al., 2017; Maréchaux et al., 2021). This includes 
design of alternative management strategies to support climate change 
mitigation policies (Maréchaux et al., 2021; De Marco et al., 2022). 

This study aimed to inform the debate about the role of forest 
management practices in sustaining high forest productivity under 
future climate conditions. To that end, a validated process-based 
modeling approach was designed to quantify controls on CO2 uptake 
and C storage in a composite matrix of managed forests, taking into 
account how combinations of climate change and management sce
narios may affect those controls. Specifically, we questioned whether, 
relative to business-as-usual (BAU) management scenarios, alternative 
forest management practices could maximize NPP while at the same 
time maintaining and/or increasing potential Carbon Woody Stocks 
(pCWS; i.e., when no decay of harvested wood products occurs) in 
response to a range of climate change scenarios. 

2. Materials and methods 

2.1. 3D-CMCC-FEM model 

2.1.2. Model description 
The 3D-CMCC-FEM v.5.5 (Three Dimensional - Coupled Model Car

bon Cycle - Forest Ecosystem Model; Collalti et al., 2014, 2016; Marconi 
et al., 2017; Engel et al., 2021; Mahnken et al., 2022) simulates daily 

GPP through the Farquhar-von Caemmerer-Berry photosynthesis model 
(Farquhar et al., 1980), modified for sun and shaded leaves (de Pury and 
Farquhar, 1997) and acclimation to temperature history (Kattge and 
Knorr, 2007). Plant respiration (Ra) is simulated explicitly and parti
tioned into growth (Rg) and maintenance (Rm) fractions as in the 
growth-and-maintenance-respiration paradigm (Amthor, 2000; 
McCree, 1970; Thornley, 2000). Rm is computed, for each 
functional-structural tree C pool (i.e. live wood, leaves and fine roots), 
using a temperature-acclimated Q10 relationship (for details on thermal 
acclimation see Tjoelker et al., 2001; Atkin and Tjoelker, 2003; Smith 
and Dukes, 2012; Collalti et al., 2018) and a N-based maintenance 
respiration (mR) rate for living tissues of 0.218 g C g N–1 day–1 (Ryan 
et al., 1991; Amthor and Baldocchi, 2001; Oleson et al., 2013; Drake and 
Tjoelker, 2016, Collalti et al., 2016, 2020a). Rg is considered a fixed 
fraction (i.e. 30%) of the remaining C once tissue Rm is accounted for 
and removed from GPP. The sum of daily Rg (if any) and Rm gives Ra. 
Daily NPP is then GPP less Ra. Allocation of NPP among tree C pools is 
performed daily, with preference to a non-structural carbon pool (NSC, i. 
e. storage in starch and sugars), which is used directly to fuel Rm, up to a 
minimum NSC threshold level. The minimum NSC-threshold level is a 
fraction (a model parameter) of the live wood C-content (Collalti et al., 
2020a). Once (and if) the minimum NSC threshold is reached, C is 
allocated preferentially for biomass growth for the different tree struc
tural C-pools depending on the phenological phase as formerly described 
in Collalti et al. (2016). The only phenological phase during which NSC 
has no priority in allocation is during bud break (D’Andrea et al., 2020, 
2021), when recent GPP is completely allocated for growth of leaves up 
to a maximum annual leaf area index (LAI, m2 m–2), which is computed 
at the beginning of each year of simulation through the pipe-model 
(Shinozaki et al., 1964; Mäkelä, 1997), and growth of fine roots. This 
NSC allocation scheme reflects a quasi-active role of NSC, with NSC 
usually having priority over growth of new structural tissues, as 
described by Sala (2011), Merganičová et al. (2019) and Collalti et al. 
(2020a). This implies that any asynchrony between C-demand (i.e. 
respiration and growth) and C-supply (photosynthesis) is buffered by 
changes to the NSC pool. When NSC approaches zero and cannot be 
refilled by GPP, carbon starvation occurs, and tree death is simulated. 
This overall C-allocation scheme in the 3D-CMCC-FEM model follows 
the functional balance theory of allocation, similarly to other models 
(Merganičová et al., 2019). Age-related mortality, carbon starvation, 
and a background mortality (i.e. the as-yet unexplained mortality), 
represent the different types of mortality simulated by the model; the 
last one is turned off when forest management is applied. An in-depth 
description of the model’s underlying characteristics, responses to 
climate change, and sensitivity to model parameter values, as well as 
model limitations, is in Collalti et al. (2019, 2020a, and references 
therein). 

2.2.2. Forest management routine 
Historically, the majority of European forests were actively managed 

and the share of coniferous species, particularly Scots pine and Norway 
spruce, was favored due to their high growth increment rates (Naudts 
et al., 2016). Management techniques (thinning and clear-cutting) 
aimed at maximizing productivity and reducing losses often resulted 
in even-aged, mono-specific forest stands (Campioli et al., 2015, and 
references therein; State of Europe’s forests 2020; Figure S1 in Supple
mentary Material). In such stands, carbon pools and fluxes strongly 
depend on rotation lengths (tree age-class distribution), thinning inter
val, and thinning intensity (Kaipainen et al., 2004; Nabuurs et al., 2008). 

In this study we varied these three key management factors: thinning 
intensity, thinning interval and rotation age (following Reyer et al., 
2020). Thinning intensity is represented in the model by the percentage 
of stand basal area to be removed based on the total stand basal area. 
Thinning interval is the number of years between two consecutive op
erations. Rotation age is the stand age at which a full harvest occurs, 
after which the stand is replanted with saplings of the species adopted in 
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the Inter-Sectoral Impact Model Intercomparison Project (ISIMPI, htt 
ps://www.isimip.org, Warszawski et al., 2014) protocol. The model 
benchmark was the BAU forest management scheme for the most com
mon European species as described in Reyer et al. (2020) and Mahnken 
et al. (2022) and applied in three contrasting forest stands as in Collalti 
et al. (2018). 

2.2. Sites, data and experimental design 

The model was parameterized for, and simulated C fluxes and tree 
growth in three even-aged, long-monitored, managed European forest 
sites which are part of the Fluxnet network (Pastorello et al., 2020), the 
ISIMIP initiative and the PROFOUND database (Reyer et al., 2020; 
Mahnken et al. 2022): (1) the temperate European beech (Fagus sylvatica 
L.) forest of Sorø, Denmark; (2) the Norway spruce (Picea abies (L.) H. 
Karst) stand of Bílý Křìž in Czech Republic, and (3) the boreal Scots pine 
(Pinus sylvestris L.) forest of Hyytiälä, Finland (Table 1). These sites were 
selected because they represent the dominant forest types in Europe 
covering the temperate and boreal climatic zones (Figure S1),which 
contain more than 50% of European forest biomass (Avitabile et al., 
2020), and their management best corresponds to ‘the intensive 
even-aged forestry’ as defined by Duncker et al. (2012). 

Daily weather values input to the model for each site were derived 
from the climate scenario data from the ISIMIP Fast Track initiative 
based on the Climate Model Intercomparison Project 5 (CMIP5) in which 
five Earth System Models (ESMs; i.e.: HadGEM2-ES, IPSL-CM5A-LR, 
MIROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M) were driven by 
four Representative Concentration Pathways (RCPs) of atmospheric 
greenhouse gas concentration trajectories, namely RCP 2.6, RCP 4.5, 
RCP 6.0, and RCP 8.5 (Moss et al., 2010; van Vuuren et al., 2011). Daily 
meteorological forcing-data for each site used by 3D-CMCC-FEM were 
available as bias-corrected/downscaled variables (air temperature, 
precipitation, solar irradiance) and as non-corrected variables (relative 
humidity) according to Hempel et al. (2013). The RCP atmospheric CO2 
concentration values for the period 2016 to 2500, based on Mein
shausen et al. (2011) as described in Reyer et al. (2020), were used to 
drive the biogeochemical photosynthesis model with values varying at 
the end of this century from 421.4 μmol mol–1 (RCP 2.6) to 926.6 μmol 
mol–1 (RCP8.5). 

2.2.1. Virtual stands 
Given that the European forested area is composed of a mix of 

differing-aged stands, and since forest C cycle processes may respond 
differently to climate factors at different ages (e.g. Collalti and Prentice, 
2019; Collalti et al., 2020b; Huber et al., 2018, 2020; Migliavacca et al., 
2021), we developed a Composite Forest Matrix (CFM) consisting of a 
mixture of stands of different age, structure and associated biomass. 
Starting from the real stands, we generated a prescribed number of 
virtual stands in order to obtain representative model outputs of a larger 

set of different age-classes (with their associated forest attributes) to 
cover an entire rotation period (~140 years, depending on species), 
similar to the approach in in Bohn and Huth (2017). Because 
3D-CMCC-FEM, in accordance with experimental evidence, is sensitive 
to the stand structure (see Collalti et al., 2019, 2020a), this procedure 
allows a robust assessment of effects of management practices across the 
full range of applicable stand ages . A CFM framework was then created 
by running at each site the model from 1997 to 2199 (to cover the entire 
rotation length for each species) under a contemporary climate scenario 
(no climate change), consisting of de-trended and repeated cycles of 
1996-2006 historical weather, with fixed atmospheric CO2 concentra
tion of 368.8 μmol mol–1 and BAU management practices. From each of 
these simulations data needed to reinitialize the model at every rotation 
length/10 were extracted (Fig. 1). Thus, in total, ten virtual stands rep
resenting different age classes of the composite matrix were selected and 
included into the CFM. The management scenario analysis was carried 
out on this set of forest virtual stands. 

2.2.2. Alternative management (AM) schemes 
For each real and virtual stand at each of the three sites we applied 

28 management scenarios: the BAU and ‘no management’ (NO-MAN: 
stands allowed to grow without thinning or harvesting) schemes plus 26 
alternative management schemes. These alternative forest management 
scenarios represent all the possible combinations of two thinning in
tensities, two thinning intervals, and two rotation durations than differ 
from those in the BAU scenario. The schemes were grouped (Tables 1 
and Table S1) into combinations of: (1) ‘more intensive’ (‘AM+’), where 
at least one out of the three management variables reflect an intensified 
management case relative to BAU (e.g. higher thinning intensity and/or 
shortened interval and/or shortened rotation length than BAU), and the 
other one or two (or no) variables are kept as in BAU; (2) ‘less intensive’ 
(‘AM–’), where at least one variable reflects lower thinning intensity 
and/or prolonged interval and/or prolonged rotation length, compared 
to the BAU case; and (3) ’mixed schemes’ (‘MIX’), where at least one 
management variable was more intensive and at least one management 
variable was less intensive than the BAU scheme. 

2.2.3. Model runs and evaluation 
The starting year for all simulations was 1997, consistently with the 

availability of measured stand carbon flux data used for the model 
initialization and evaluation. After creation of the virtual stands, based 
on de-trended historical weather time series for period 1996-2006, 
climate change simulations were conducted for the period 2006 to 
2100. By considering all combinations of management and climate 
change scenarios from the different ESMs climate forcings, 6,160 sim
ulations were performed at each site (i.e., 5 ESMs * 4 RCPs * 11 stands * 
28 management schemes) for a grand total of 18,480 model runs. 

To gauge model sensitivity to the study variables we organized the 
analysis according to a factorial design (Mason et al., 2003; Collalti 

Table 1 
Site description for model initialization data (corresponding to the year 1997 for Sorø and Hyytiälä and 2000 for Bílý Kříž) to the real stands’ characteristics, and 
management variables used in simulations (see also Collalti et al., 2018; Reyer et al., 2020). Values in brackets represent bounds of variability (the maximum and the 
minimum absolute values) adopted for alternative management simulations. Re-planting information for the sites in the simulation experiments, according to ISIMIP 
protocol as in Reyer et al. (2020). The real stands refer to the monitoring sites in Sorø (F. sylvatica, Denmark), Bílý Kříž (P. abies, Czech Republic) and Hyytiälä 
(P. sylvestris, Finland).  

Species DBH Age Tree 
height 

Density Thinning 
intensity 

Thinning 
interval 

Rotation age Replanting 
Species 

Density Age Tree 
height 

(cm) (years) (m) (trees 
ha–1) 

(% basal area) (years) (years) (trees 
ha–1) 

(years) (m) 

Fagus 
sylvatica 

25 80 25 400 30 (20-40) 15 (5-25) 140 (120- 
160) 

Fagus sylvatica 6000 4 1.3 

Pinus 
sylvestris 

10.3 36 10 1800 20 (10-30) 15 (5-25) 140 (120- 
160) 

Pinus sylvestris 2250 2 1.3 

Picea abies 7.1 16 5.6 2408 30 (20-40) 15 (5-25) 120 (100- 
140) 

Picea abies 4500 4 1.3  
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et al., 2018) across a matrix of Stand, ESM and RCP, generating seven 
possible combinations from each factor. This was used to identify the 
most influential factor the modelled carbon cycle variables GPP, Ra, 
NPP, carbon-use efficiency (CUE = NPP/GPP), net woody productivity 
(NPPwoody), and potential Carbon Woody Stocks. The model was eval
uated using 1997-2005 annual GPP and NPPwoody data for Sorø and 
Hyytiälä and 2000-2005 for Bílý Křìž by comparing simulated GPP 
against eddy covariance estimates (Pastorello et al., 2020), and 
compared modeled wood growth against measured NPPwoody (Principal 
Investigator’s site for Hyytiälä and Bílý Křìž under personal communi
cation, and Wu et al., 2013 for the site of Sorø) and stem diameter at 
breast height (DBH; Reyer et al., 2020; Mahnken et al., 2022). Subse
quent years were excluded from the model evaluation since the scenario 
period in the ESMs started in 2006, and hence was driven by different 
atmospheric CO2 concentration trajectories after 2006. 

2.3. Effects of climate change and management on carbon fluxes and 
biomass 

As carbon fluxes do not scale linearly to stocks (Schulze et al., 2020) 
data analyses focused separately on the variables NPP and pCWS, the 
sum of standing and previously harvested woody stocks. Net primary 
productivity can be a good proxy for forest carbon sink processes (Sha 
et al., 2022), and the net biomass input to forest ecosystems (Trotsiuk 
et al., 2020), with decomposition (decay, or heterotrophic respiration) 
processes representing the active carbon source process. Net primary 
production is a dynamic balance between photosynthesis and plant 
respiration, which respond separately and/or in combination to a range 
of climatic factors and, in managed forests, to management practices 
(Collalti et al., 2020a; 2020b). These age-dependent responses are 
generally not prone to in situ quantification over long periods, especially 
for climate change issues, hence raising the need for process-based 
modeling. Harvested wood products are considered here without 
decay; hence we aim at evaluating only the potential maximum attain
able total woody standing stocks under a wide spectrum of possible 
management schemes without any consideration of the turn-over of 
harvested wood products. Data were averaged over the emission 

scenario simulation period 2006-2099 and aggregated over virtual and 
real stands and over ESMs but distinguished between RCPs. In spite of 
site-specific differences in magnitude of response to the different man
agement schemes and climate (see Supporting Material) the main 
emerging pattern with increasing intensity of management intervention 
was of similar magnitude. For this reason, data were also aggregated 
over sites. Therefore, alternative management practice results are pre
sented as aggregated according to the groups AM+ and AM– to highlight 
patterns of directional changes when moving from the current man
agement schemes toward a more intensive or a less intensive scenario. 

3. Results 

3.1. Model evaluation 

The 3D-CMCC-FEM model was evaluated at the three sites separately 
and at different temporal scales with robust data for both the carbon 
fluxes GPP and NPPwoody, and the structural variable average stand DBH 
(Figures S2-S4 in Supplementary Material). Simulations forced with 
both observed local daily weather and with an ensemble of outputs from 
climate models for the contemporary period compare well with the 
eddy-covariance based estimated daily GPP values at the sites of Sorø 
(Root Mean Square Error, RMSE = 2.15 g C m–2 day–1 with local climate, 
and RMSE = 2.98 g C m–2 day–1 with the ensemble across ESMs forcing; r 
> 0.86), Hyytiälä (RMSE = 1.48 g C m–2 day–1 with local climate, and 
RMSE = 1.91 g C m–2 day–1 with the ensemble across ESMs forcing; r >
0.78) and Bílý Křìž (RMSE = 2.07 g C m–2 day–1 with local climate, and 
RMSE = 2.69 g C m–2 day–1 with the ensemble across ESMs forcing; r >
0.67) (see Supplementary Material Table S2-S3). 

Modelled annual GPP was also consistent with site measurements at 
Sorø (1665 ± 171 g C m–2 year–1 and 1585 ± 190 g C m–2 year–1 

modelled from observed and modelled climate vs. 1731 ± 184 g C m–2 

year–1 measured; here and elsewhere, ± denotes one standard devia
tion)), Hyytiälä (894 ± 57 g C m–2 year–1 and 871 ± 52.6 g C m–2 year–1 

modelled from observed and modelled climate vs. 1028 ± 50 g C m–2 

year–1 measured), and Bílý Křìž (893 g C ± 252 g C m–2 year–1 and 893 ±
222 g C m–2 year–1 modelled from observed and modelled climate vs. 

Figure 1. Conceptual scheme of the virtual 
stands creation: in Phase 1 the model is 
initialized with data from the actual forest 
stands and then simulations are carried out for 
202 years of contemporary (1996-2006) 
weather and atmospheric CO2 concentration. In 
Phase 2, multiple stands are drawn from the 
simulations in Phase 1 and used to build the 
Composite Forest Matrix (CFM) composed of 
representative forest stands. The climate change 
(RCPs) and management scenarios (BAU, 
Alternative Managements, No-Management) 
simulations are then applied to the CFM.   
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1024 ± 354 g C m–2 year–1 measured). Similarly, modelled values were 
similar to measured values of tree woody pools (i.e. NPPwoody) at Sorø 
(351 ± 61 g C m–2 year–1 and 275 ± 63 g C m–2 year–1 modelled from 
observed and modelled climate vs. 346 ± 36 g C m–2 year–1 measured) 
and Bílý Křìž (442 ± 79 g C m–2 year–1 and 405 ± 36 g C m–2 year–1 

modelled from observed and modelled climate vs. 380 ± 38 g C m–2 

year–1 measured). The NPPwoody simulated at Hyytiälä was not quite as 
close to available data (317 ± 21 g C m–2 year–1 and 290 ± 24 g C m–2 

year–1 modelled from observed and modelled climate vs. 228 ± 23 g C 
m–2 year–1 measured). Mean DBH increase, which was only qualitatively 
compared, is slightly underestimated at the site of Bílý Křìž (Fig. S3). 
Comparisons of literature data for NPP, Ra and CUE with modelled 
values are in Table S3. Notably, results generated by3D-CMCC-FEM 
forced with the EMSs’ climates are close to those generated when 
forced with observed climate data in the evaluation period. 

3.2. Less intensive management vs. BAU 

Simulated average NPP in the less intensive management scenario 
group (i.e. AM–) is close to the reference BAU values, ranging from 495 g 
C m–2 year–1 (–1.2%; here and elsewhere, percentages refer to changes 
compared to BAU) to 525 g C m–2 year–1 compared to the range from 502 
g C m–2 year–1 to 542 g C m–2 year–1 for RCP 2.6 and 8.5 under BAU, 
increasing slightly with warming and increased atmospheric CO2 con
centration in the early years of the study period. Changes were larger 
toward the end of the century and without significant differences across 
RCPs (Figs. 2 and S4, Table 2). Simulated pCWS values increase steadily 
along the simulation time for all the alternative management scenarios, 
with time-averaged values in the range 180-199 t C ha–1 compared to 
193-199 t C ha–1 for RCP 2.6 and 8.5 under BAU, respectively (Figs. 3 

and S4, Table 2). Relative to BAU, the ratio pCWS/NPP decreased with 
less intensive management and with no management (Table 4; results 
for each of the RCPs scenarios and all the alternative management op
tions combined are reported separately across the sites in the Supple
mentary Material Table S4). 

On average, pCWS increased with less intensive management only in 
the case of a prolonged rotation period under RCP 8.5, while NPP 

Figure 2. NPP (Net primary productivity, g C m–2 year–1) simulations under different management scenarios (AM+, BAU, AM–) and the NO-MAN scenario for each 
of the four atmospheric CO2 concentration pathways (RCPs). NPP, solid line, is averaged across the representative forests, different ESMs and aggregated according to 
the management regime. Shaded areas represent the maximum and minimum values (5th and 95th percentiles) across the representative forests, different ESMs and 
aggregated according to the management regime. 

Table 2 
NPP and pCWS computed as average over the simulation period 2006-2099, 
across all stands and ESMs climate forcing but grouped across RCPs. Mean dif
ferences (in percentage) are reported in parenthesis for NPP and pCWS between 
the alternative management scenarios and the Business-As-Usual (BAU) practices 
used here as the benchmark scenario.  

MANAGEMENT type RCP NPP pCWS 
gC m–2 y–1 tC ha–1 

BAU RCP 2.6 501.7  192.9  
BAU RCP 4.5 522.1  195.6  
BAU RCP 6.0 530.5  196.0  
BAU RCP 8.5 542.0  198.5  
AM+ RCP 2.6 350.0 (–30.2%) 184.3 (–4.4%) 
AM+ RCP 4.5 366.8 (–29.7%) 186.5 (–4.6%) 
AM+ RCP 6.0 372.0 (–29.8%) 186.4 (–4.8%) 
AM+ RCP 8.5 388.1 (–28.4%) 189.7 (–4.4%) 
AM– RCP 2.6 495.4 (–1.2%) 179.8 (–6.6%) 
AM– RCP 4.5 510.6 (–2.1%) 181.6 (–7.1%) 
AM– RCP 6.0 519.9 (–1.9%) 182.2 (–6.9%) 
AM– RCP 8.5 524.7 (–3.1%) 183.8 (–7.3%) 
NO-MAN RCP 2.6 429.1 (–14.4%) 136.2 (–29.3%) 
NO-MAN RCP 4.5 436.4 (–16.4%) 136.6 (–30.1%) 
NO-MAN RCP 6.0 444.8 (–16.1%) 137.1 (–30.0%) 
NO-MAN RCP 8.5 436.5 (–19.4%) 136.8 (–31.0%)  
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declined (~6%) in response to an extended rotation and reduced thin
ning intensity under RCP 8.5. Conversely, pCWS shows the greatest 
reduction with –13.9% when both thinning intensity and regime only 
are set to simulate decreased management intensity under RCP 8.5 
(Table S5). In summary, AM– simulations generally reduced pCWS with 
little effect on NPP. For NPP some intra-site differences exist, with the 
representative forest of Hyytiälä showing higher NPP values when 
applying a less intensive management than the reference BAU. Differ
ences between the emissions scenarios were small. 

3.3. More intensive management vs. BAU 

Across all stands and ESMs the AM+ simulations reduced NPP about 
30% relative to the BAU scenario (Figs. 2 and S4, Table 2). Conversely, 
AM+ reduced pCWS only 4-5% relative to BAU across the climate 
change scenarios (Figs. 3 and S4, Table 2). Results for each of the RCP 
scenarios and under all the alternative management options combined 
are reported separately across the sites in the Supplementary Material 
(Table S4 and S5). The decreases in NPP with AM+ were larger than the 
decreases with AM- across RCPs, with even a slight increase in NPP in 
two of the seven AM- scenarios under RCP 2.6 (Table S5). Conversely, 
pCWS shows a net gain with +4.1%, compared to the BAU, which ap
plies under an increased thinning intensity under RCP 8.5, while the 
greatest reduction in pCWS with –13.9% is modelled when both thin
ning intensity and frequency are increased and a shortened rotation turn 
are simulated under RCP 8.5 (Table S5). Generally, both NPP and pCWS 
results from the AM+ schemes are, on average, close to or lower than 
those from the reference BAU and this holds across the three represen
tative forests (Figs. S10-12). When considered during the early portion 
of the study period, the differences in NPP and pCWS between AM+

management scenarios and BAU are narrower. In particular, an average 

gain of 5% in pCWS could be achieved over a wide range of AM+

schemes, but at the expenses of an average NPP change of –30% 
(Fig. S6). 

For both NPP and pCWS, the differences across RCP scenarios are 
much smaller than across the different management scenarios indicating 
that management may be more important than near-term climate 
change in controlling in the C cycle of European forests. 

3.4. No management vs. BAU 

The NPP values in the NO-MAN scenario are, on average, lower than 
the reference BAU scenario varying from –14.5% (RCP 2.6) to –19.5% 
(RCP 8.5) (Fig. 2, Table 2). However, a site-specific variability in the 
NPP response to the management scenarios applied exists, with differ
ences between NO-MAN and BAU options ranging from 9.0% to –41.7%, 
for Hyytiälä and Bílý Křìž respectively, both under the warmest emission 
scenario (Table S4). Differences between NO-MAN and BAU become 
more evident during the simulation period and across RCPs scenarios, 
with the mean NPP value stabilizing or slightly increasing under the 
BAU (and AM–) option over time. Conversely, in the NO-MAN scenario 
the values steadily decreased (Fig. 2). 

The simulated pCWS, which is represented only by standing biomass 
(i.e., no harvested wood) in the NO-MAN scenario was, on average, 
lower than in the BAU scenario, with differences of order –30.0% (from 
–21.6% to –40% across the different sites). During the simulation period, 
pCWS values in the NO-MAN option first increase slightly at the 
beginning of the simulation and then decrease significantly toward the 
end of the century (Fig. 3, Table 2). The NO-MAN case returns the lowest 
average amount of total woody stocks under every emission scenario 
(Fig. 4 and Table 2). 

Figure 3. pCWS (potential Carbon Woody Stock = standing and potential harvested woody biomass; t C ha–1) simulations under different management scenarios 
(AM+, BAU, AM–) and the NO-MAN scenario divided by different emission scenario RCPs. pCWS, solid line, is averaged across the representative forests, different 
ESMs and aggregated according to the management regime. Shaded areas represent the maximum and minimum values (5th and 95th percentiles) across the 
representative forests, different ESMs and aggregated according to the management regime. Carbon sequestration rates (as annual increase of CWS, t C ha–1 year–1) in 
the potential total woody stocks (mean and standard deviation) are reported in the bar plots. 
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3.5. Mixed management alternatives and the factorial analysis 

A mixed combination of management schemes (namely ‘MIX’) was 
analyzed for all possible combinations (Fig. 5 and Supplementary ma
terial Table S1, S4 and S5). There were no ‘MIX’ options that simulta
neously increased both in NPP and pCWS compared to the BAU 
scenarios. Values for NPP range from –1.38%, with a prolonged thinning 
regime and rotation, and an increase in thinning intensity; to –58.4% 
under a prolonged thinning intensity and rotation period but with a 
reduced thinning regime, both under RCP 2.6 (Table S5). Similarly, with 
the same management schemes, pCWS declined 16.1% under RCP 6.0, 
when compared to BAU, but increased 5.7% under RCP 8.5 in response 
to increased rotation length in combination with increased thinning 
intensity. 

The factorial analysis performed over all the main carbon fluxes and 
stock variables produced by the model and separated by site, indicates 
that a significant fraction of the total variability of the key carbon flux 
variables was driven by the stand factor, i.e. the forest structure as 
generated by different management schemes, affecting the distribution 
of age classes, including different above- and below-ground biomass 
(Fig. S6 and Table S6 in Supplementary Material). 

4. Discussion 

4.1. Limited leeway to increase carbon uptake and woody stocks with 
alternative management scenarios 

The variables NPP and pCWS represent two sides of the same coin 
since the former (i.e. NPP) represents the short- to medium-term active 
carbon sequestration capacity while the latter is the sequestered (and 
maintained) carbon over the medium- to long-term. The present simu
lations clearly indicate that even under future climate change scenarios 
the options are limited for managing forests to help trees maintain their 

carbon sequestration potential and enhance their ability to cope with 
increasingly stressful conditions, while in addition increasing their 
productivity compared to the no-management option. Reducing tree 
density allows individual trees to benefit from less competition for 
potentially limiting resources such as light and soil moisture, driving 
their potential to increase photosynthetic activity and growth rate 
(Zeide et al., 2001). In addition, stand rejuvenation through harvesting 
and the replanting of saplings, with less ‘respiring’ (live) biomass per 
unit of photosynthetic leaf area (because of a shift toward younger 
stands), and combined with the fertilization effects of increased atmo
spheric CO2 concentration can potentially drives to more productive and 
efficient forests. This is mirrored in the observed capability of trees to 
partition more of the photosynthetically assimilated carbon into new 
woody biomass rather than into nonstructural carbon pools (Campioli 
et al., 2015; Pappas et al., 2020; Collalti et al., 2020a; Huang et al., 
2021). This aspect is reflected in the increasing Harvested Wood Prod
ucts (HWP; Figure S7) over time with more frequent thinning, reduced 
tree density, replacement and presence of younger forest stands that 
potentially can remain in the system as standing biomass over the 
long-term (Figure S8). Overall, the model projects on average the 
highest pCWS under the BAU management scheme, even in the future. 

The potential to extract more wood and more often, i.e. to shorten 
the harvest interval, and at the same time maintain at least the current 
forest biomass, depends on NPP under the different scenarios. We found, 
however, that BAU management remains the most favorable scheme 
under future environmental conditions and might already be a close-to- 
optimum management approach for different RCP scenarios (Fig. 4) and 
across the individual sites (Figures S9-S11). This is an endorsement of 
past research arriving at today’s management practices and a coinci
dence that today’s most favorable scheme might also be most favorable 
in a future altered climate. With more frequent harvesting and 
replanting and increasing intensity of intervention compared to the 
benchmark BAU, the NPP is not shown to increase any further under any 

Figure 4. Average NPP (net primary productivity, g C m–2 year–1) vs. pCWS 
(the sum of standing and potential harvested woody products; t C ha–1) over the 
period 2006-2099, for the three management scenarios: AM+, AM–, BAU; and 
the NO-MAN for the 4 RCPs. Reported values refer to data averaged across real 
and virtual stands and across species. Data ellipses are also reported in shaded 
colors and refer to all data. NOTE: each single scenario according to Table S1 is 
reported here (16 in total excluding the mixed ones). In the subplot the dif
ferences are expressed as % and are reported along a parametric curve (third 
order polynomial) with the point (0,0) representing the reference BAU. Arrows 
indicate the increasing intensity of management intervention. No significant 
differences across RCPs were detected. 

Figure 5. Percentage of changes for Mean NPP (net primary production) and 
pCWS (potential Carbon Woody Stocks) over the period 2006-2099 between the 
managed scenarios AM+, AM–, MIX, NO-MAN (AM+, more intensive than 
BAU; AM–, less intensive than BAU (business as usual); MIX: mixes options 
according to Table S1, NO-MAN: no management option) and the BAU scenario 
reported for the four representative concentration pathways (RCPs). Values 
refer to data averaged across real and virtual stands and across species. Note: 
each single scenario according to Table S1 is here reported (28 in total). 
Parametric curve fitting (polynomial of order 3) is also reported for each RCP 
and it is computed according to the averaged data for each management 
intervention scenario and RCP combination. 
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RCP scenario, in spite of an average younger and, in theory, more pro
ductive forest stand. The net growth rate does not compensate for the 
increased fellings (tree harvesting), while in parallel there is a limited 
yield in terms of increased woody carbon stocks, as reflected in a low 
standing biomass that is likely a sign of a critically low tree density. 
Albeit the BAU reference benchmark is already an intensive manage
ment approach with tree fellings as a percentage of net annual increment 
of 84%, 77% and 101% for Czech Republic, Finland and Denmark, 
respectively, as reported for 2005 (State of Europe’s forests 2020), the 
first year of our RCP-based climate change response simulations. Simi
larly, Pussinen et al. (2009) showed that increasing the total harvested 
products led to a decrease in both NPP and forest standing biomass in 
some European areas. The difficulties associated with simultaneously 
increasing both forest standing biomass and harvested wood products 
were shown in the seminal modeling study of Thornley and Cannell 
(2000). 

An important factor contributing to the apparent lack of significant 
differences in forest responses across RCPs scenarios, compared to the 
differences across different management schemes, might come from the 
combination of counteracting key drivers of plant physiology (e.g. 
lengthening of the growing season by warming and, in parallel, an 
increased maintenance respiration rate from that same warming) which 
are considered in the model despite temperature acclimation. Although 
experimental evidence for the CO2 fertilization effect on plant carbon 
accumulation is strong and is typically predicted by vegetation models 
albeit with different degrees of certainty, the probability for its persis
tence into the longer-term future is a hotly debated issue (Nabuurs et al., 
2013; Habau et al., 2020; Wang et al., 2020; Gatti et al., 2021; Walker 
et al., 2021). The biochemical model of photosynthesis used here (Far
quhar et al., 1980) includes a nonlinear saturating response to CO2, yet, 
other environmental drivers, such as temperature, vapor pressure deficit 
(which scales exponentially with warming) and water availability were 
shown to interact to down-regulate the positive CO2 effect on GPP 
(Grossiord et al., 2020). Data at the biome scale (see Luyssaert et al., 
2007) indicated a potentially high sensitivity of plant respiration to 
warming that may stabilize NPP over a temperature threshold with no 
further gains. Warming in low-temperature-limited forest biomes would 
be expected instead to have a positive effect on annual GPP and NPP 
(Henttonen et al., 2017; Sedmáková et al., 2019). However a 
warming-induced increased respiration cost might curb these trends and 
even offset a positive GPP and/or NPP response to increasing atmo
spheric CO2 concentration, as indicated by some other modeling and 
experimental studies (Way et al., 2008; Gustavson et al., 2017; Collalti 
et al., 2018; but see Reich et al., 2016). For example, Mathias and 
Trugman (2021) showed a potential future unsustainable growth for 
boreal and temperate broadleaved forests, with the net overall effect of 
decreased NPP. Other studies already indicated that combined impacts 
of warming and increasing atmospheric CO2 concentration might cause 
forests to grow faster and mature earlier but also to die younger 
(Kirschbaum, 2005; Collalti et al., 2018, 2019). With the increasing 
standing biomass and accumulation of more respiring tissue in older 
trees, plant respiration might increase more quickly than GPP, as the 
canopy closure would be reached earlier, capping GPP when all avail
able solar radiation is intercepted, but with sustained respiratory needs. 
The use here of many virtual stands of different ages in our simulations 
might have (realistically) compensated for local stand-age effects on 
biomass and stand structural responses to climate change that would be 
counteracting across a landscape. To the extent that this is true, the 
simulated patterns obtained would be related to effects of climate, forest 
management, and their multiple combinations only. 

Ultimately these simulations indicate that increasing the harvest rate 
and at the same time keeping the fellings below the growth rate will be 
challenging. As such, the possibility of simultaneously increasing both 
carbon sequestration rate and tree carbon (standing biomass) storage 
capacity while managing forests in a sustainable way may be very 
limited. A steady intensification or intervention frequency – alone or in 

combination – compared to the business-as-usual scheme might come at 
the price of a substantial loss of primary productivity. While the amount 
of potential harvested woody products still would be significant, we 
would de facto end up reducing the active forest carbon sink and thus the 
forest’s potential to assimilate and sequester CO2 from the atmosphere. 

4.2. Role of forest management in the context of climate change 

In the context of climate uncertainty and because of policy in
tentions, management practices may no longer prioritize productivity 
only – which traditionally includes rotation times being adjusted to 
maximize value of timber – without preserving the forest carbon sink 
and ensuring the long-term functioning of forests and the continued 
provision of their many ecosystem services (Krofcheck et al., 2019). The 
selection of adaptive management practices has been suggested as a 
mechanism to potentially enhance the climate change mitigation po
tential of forest ecosystems (Tahvonen, 2016; Yousefpour et al., 2017). 
Our model results highlight, for Central and Northern temperate and 
boreal European forests, the importance of forest structure to sustain or 
even enhance productivity and carbon storage. This in turn indicates 
that management practices may be quantitatively as important as future 
climate and atmospheric CO2 concentration in regulating the carbon 
sink strength of forests, which is in line with some previous modeling 
studies (Garcia-Gonzalo et al., 2007; Akujärvi et al., 2019; de Wergifosse 
et al., 2022). These simulations indicate that silvicultural practices 
included in the model would persist as key factors in the regulation of 
carbon sequestration through the end of this century under any of the 
CMIP5 RCP scenarios. In accordance with the modeling study of Kind
ermann et al. (2013), our results indicate the need to sustain NPP rather 
than maximizing forest carbon stocks. Our results also point out, how
ever, a narrow operational space surrounding the BAU scheme which 
can be designated as near-optimal over a wide and diversified portfolio 
of alternative management schemes across the broad range of 
RCP/ESM-based climate change scenarios. Conversely, other studies 
(Garcia-Gonzalo et al., 2007; Luyssaert et al., 2018) showed that harvest 
intensity should be loosened in order to maximize the carbon sink which 
would lead to reductions in the wood harvesting rates. However, under 
adverse climate change effects, reductions in wood harvesting rates may 
correspond with declining carbon sequestration. 

Even considering changes in species composition by replanting 
better-suited species under a climate change adaptive framework, 
Schelhaas et al. (2015) found a reduction of the net increments, 
although these did not affect wood product amounts. On the other hand, 
Pussinen et al. (2009), found that under an increased felling rates regime 
(i.e. high harvested products amount) maintaining the current forest 
standing biomass was possible even under future climate scenarios. 
However, in their study NPP was simply assumed to increase propor
tionally to the temperature, driving increased growth rates at boreal and 
temperate forest sites. The present simulation study used a more realistic 
process-based representation of climate change impact on forest growth. 
This reveals instead a more modest, or even unfavorable, effect of 
climate change despite a CO2 fertilization effect on NPP. Others have 
suggested that past and/or future climate change did, or could, nega
tively affect NPP (Reich and Oleksyn, 2008; Bastos et al., 2020) in a 
range of forested and non-forested ecosystems through increased fre
quency and/or magnitude of large-scale disturbances (e.g. heat waves, 
windstorms, weather-based pest outbreaks), with significant variation in 
effects in different ecosystems or forest types and locations (e.g. Thom 
et al., 2017; Nabuurs et al., 2019; McDowell et al., 2020; Senf and Seidl, 
2021b; Gampe et al., 2021). Should such increases in climatic extremes 
(e.g. drought and heatwaves) and disturbances (pests outbreaks, wild
fires, storms) occur – and negatively affect the carbon sink capacity of a 
significant fraction of European forests – the robustness of the BAU 
management scheme specified in our simulations might be questioned 
with an adaptive set of management options designed, tested and ulti
mately put into place (Yousefpour et al., 2017). However, under the 
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unmanaged-forest scenario, our simulations resulted in significant and 
steady decline in NPP through the year 2099 when averaged over all the 
climate change scenarios considered. 

4.3. Further consideration and outlook 

In this study we found that intensification of forest management 
practices might lead to declines in both CO2 assimilation and the total 
woody stocks. 

The focus was on a subset of forest types that currently play a sig
nificant role in the European carbon balance and wood product markets 
by representing more than 50% of the EU standing biomass (Avitabile 
et al., 2020). 

In the current modelling framework, our results refer to potential 
values of carbon woody biomass, with no estimated decay for harvested 
wood products. 

In this context, our aim was primarily to quantify the efficiency of 
forest trees to actively sequester and store carbon from the atmosphere 
and, thus, defining their potential contribution to mitigation policy re
quirements (see e.g. Valade et al., 2017). 

Pure stands were selected for this study as they represent most of the 
managed stands in Europe, and no species migration under climate 
change was included, even in the no-management scenario. However, 
we highlight that the overall climate change mitigation of the forestry 
sector is further influenced by carbon sequestration in harvested wood 
products (Brunet-Navarro et al., 2016) as well as energy and material 
substitution effects of wood products, which is depending on dynamic 
changes in energy portfolios and greenhouse gas emissions in other 
sectors and thus associated with substantial and additional uncertainty 
(e.g. Leskinen et al., 2018; Howard et al., 2021; Soimakallio et al., 
2021). 

Since the rates of potential species migration and/or replacement 
may be incompatible with the expected rates of climate change, at least 
for the high RCP scenarios (Settele et al., 2014), the effectiveness of tree 
species change as a mitigation factor in unmanaged forests could be 
limited. Future research with validated dynamic vegetation models is 
paramount for it might provide needed insights into European forest 
carbon sequestration potential across a broad geographic extent through 
mechanisms of seed dispersal, species migration and up-scaling tech
niques (Fritsch et al., 2020). 

In addition, despite simulating a broad and diversified range of 
different silvicultural interventions aimed at testing the possibility to 
increase NPP and carbon stocks, additional studies will be crucial to 
address changes in species selection (i.e. genetic selection) and assisted 
species migration in adaptive forest management. 

Finally, the focus of the present work was to quantify the capacity of 
trees to sequester carbon in woody biomass and in turn to provide wood 
products in the face of expected climate changes. A life-cycle analysis of 
the harvested wood products was not included, and in essence implicitly 
assumed to be unaffected by climate change. 

5. Conclusions 

To our knowledge this is one of the first modeling studies that sys
tematically analyses, over a wide range of scenarios, the possibilities and 
limitations of altering forest management practices to achieve the 
twofold objective of maximizing forest C-sequestration capacity while 
concomitantly maintaining and/or increasing pCWS in the face of future 
climate change. 

Even though the analysis was confined to three sites, the represen
tativeness of those sites to other European forests and the general con
sistency of the results indicates a broader significance and applicability. 
In particular, the differences between AM+ and AM–, each relative to 
BAU, indicates a relatively consistent response across species within 
different climate change scenarios and management options. 

Our results indicate that the scope to meet the above twofold 

objective may be limited, because business-as-usual management prac
tices may already be nearly optimal in terms of carbon uptake, seques
tration and storage, as testament to positive outcomes of previous 
silvicultural research. A general conclusion of the modelled results is 
that NPP and/or pCWS are likely to decline, relative to BAU, with any 
significant change in forest management practices. 

Beside the economic value of the extractable wood and the potential 
for energy and material substitution, it is today crucial for EU countries 
to preserve forest’s functionalities under the pressure of the rapidly 
changing climate conditions, in order to maintain the climate mitigation 
potential and the supply of wood products and many ecological goods 
and services. Forest management based on scientific principles remains 
a valuable tool for local, regional and global strategies to optimize the 
forest carbon sinks and provide desired products under a varying 
climate. However, the extensive modeling in this study and related 
research does not support an optimistic view that changes to manage
ment practices in European forests can be relied on to significantly in
crease carbon uptake and storage while increasing wood production 
above current rates. 
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Collalti, A., Tjoelker, M.G., Hoch, G., Mäkelä, A., Guidolotti, G., Heskel, M., Petit, G., 
Ryan, M.G., Battipaglia, G., Matteucci, G., Prentice, I.C., 2020a. Plant respiration: 
Controlled by photosynthesis or biomass? Global Change Biology. https://doi.org/ 
10.1111/gcb.14857. 

Collalti, A., Ibrom, A., Stockmarr, A., Cescatti, A., Alkama, R., Fernández-Martínez, M., 
Matteucci, G., Sitch, S., Friedlingstein, P., Ciais, P., Goll, D. S., Nabel, J. E. M. S., 
Pongratz, J., Arneth, A., Haverd, V., & Prentice, I. C. (2020b). Forest production 
efficiency increases with growth temperature. Nature Communications, under review. 
https://doi.org/10.1101/2020.04.15.042275. 

de Pury, DGG, Farquhar, GD, 1997. Simple scaling of photosynthesis from leaves to 
canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557. 

de Wergifosse, L., et al., 2022. Simulating tree growth response to climate change in 
structurally-diverse oak and beech forests. Sci. Total Environ. 806 (2), 150422 
https://doi.org/10.1016/j.scitotenv.2021.150422. 

De Marco, A., Sicard, P., Feng, Z., Agathokleous, E., Alonso, R., Araminiene, V., 
Augustatis, A., Badea, O., Beasley, J.C., Branquinho, C., Bruckman, V.J., Collalti, A., 
David-Schwartz, R., Domingos, M., Du, E., Garcia Gomez, H., Hashimoto, S., 
Hoshika, Y., Jakovljevic, T., Paoletti, E., 2022. Strategic roadmap to assess forest 
vulnerability under air pollution and climate change. Glob. Change Biol. 28, 
5062–5085. https://doi.org/10.1111/gcb.16278. 
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Nadal-Sala, D., Sabaté, S., Vallet, P., Aussenac, R., Cameron, D.R., Bohn, F.J., 
Grote, R., Reyer, C.P.O., 2022. Accuracy, realism and general applicability of 
European forest models. Glob. Change Biol. 00, 1–23. https://doi.org/10.1111/ 
gcb.16384. 
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